Saltar navegación

Teorema de Rouché-Frobenius

O teorema de Rouché-Frobenius permite saber que tipo de sistema temos analizando o rango da matriz e a matriz ampliada.

Dado un sistema de \(m\) ecuacións lineais con \(n\) incógnitas, pódese clasificar segundo o número de solucións que teña do seguinte xeito:

• Se \(rg(A) = rg(A^*) = n \implies\) Sistema compatible determinado

• Se \(rg(A) = rg(A^*) < n \implies\) Sistema compatible indeterminado

• Se \(rg(A) \neq rg(A^*) \implies\) Sistema incompatible

Sistema incompatible

\[ \left\{ \begin{array}{lcl} 2x + 4y & = & 0 \\ x + 2y & = & 3 \end{array} \right. \implies A = \left( \begin{matrix} 2 & 4 \\ 1 & 2 \end{matrix} \right), A^* = \left( \begin{matrix} 2 & 4 \\ 1 & 2 \end{matrix} \right. \left| \begin{matrix} 0 \\ 3 \end{matrix} \right) \]

Comparamos os rangos das matrices:

\[ \left. \begin{array}{lcl} rg(A) & = & 1 \\ rg(A^*) & = & 2 \end{array} \right\} \implies rg(A) \neq rg(A^*) \]

Polo tanto é un sistema incompatible. Non ten solución.

Sistema compatible indeterminado

\[ \left\{ \begin{array}{lcl} x + y + z & = & 3 \\ x - 2y + 3z & = & 0 \\ 2x + 2y + 2z & = & 6 \end{array} \right. \implies A = \left( \begin{matrix} 1 & 1 & 1 \\ 1 & -2 & 3 \\ 2 & 2 & 2 \end{matrix} \right), A^* = \left( \begin{matrix} 1 & 1 & 1 \\ 1 & -2 & 3 \\ 2 & 2 & 2 \end{matrix} \right. \left| \begin{matrix} 3 \\ 0 \\ 6 \end{matrix} \right) \]

Comparamos o rango das matrices:

\[ \left. \begin{array}{lcl} rg(A) & = & 2 \\ rg(A^*) & = & 2 \\ n & = & 3 \end{array} \right\} \implies rg(A) = rg(A^*) < n \]

Polo tanto é un sistema compatible indeterminado. Ten infinitas solucións.

Sistema compatible determinado

\[ \left\{ \begin{array}{lcl} x + y + z & = & 3 \\ x - 2y + 3z & = & 2 \\ 2x + y - 2z & = & 1 \end{array} \right. \implies A = \left( \begin{matrix} 1 & 1 & 1 \\ 1 & -2 & 3 \\ 2 & 1 & -2 \end{matrix} \right), A^* = \left( \begin{matrix} 1 & 1 & 1 \\ 1 & -2 & 3 \\ 2 & 1 & -2 \end{matrix} \right. \left| \begin{matrix} 3 \\ 2 \\ 1 \end{matrix} \right) \]

Comparamos o rango das matrices:

\[ \left. \begin{array}{lcl} rg(A) & = & 3 \\ rg(A^*) & = & 3 \\ n & = & 3 \end{array} \right\} \implies rg(A) = rg(A^*) = n \]

Polo tanto é un sistema compatible determinado. Ten unha única solución.

Feito con eXeLearning (Nova xanela)