

SUSANA OUBIÑA FALCÓN 1

CONVOLUCIÓN Y REDES NEURONALES CONVOLUCIONALES

Comenzaremos con el proceso de convolución viendo el problema de por qué se inventó.

¿Cómo procesamos los humanos una imagen? Simplemente, detectando los ejes o las líneas de

los objetos que la conforman.

Los ejes y bordes nos ayudan a a saber dónde están los objetos que existen en toda imagen.

Nuestro ojo está acostumbrado a detectarlos. Para él es sencillo.

Informáticamente, la información

de una imagen visual se

descompone en una matriz de

pixeles dispuestos en filas y

columnas. Cada píxel representa

un punto de la imagen en un

sistema bidimensional y contiene

información sobre el color (siendo

el modelo RGB el más común en IA), y la intensidad luminosa y la opacidad. Cada una de las tres

componentes (rojo, verde o azul) tiene un valor numérico entre 0 y 255 que indica la intensidad

de ese color específico en el píxel.

Si nuestro ojo detecta un cambio brusco de color (y valor entre pixeles

cercanos), eso es un eje.

SUSANA OUBIÑA FALCÓN 2

CONVOLUCIÓN Y REDES NEURONALES CONVOLUCIONALES

Los ordenadores no ven lo mismo que nosotros, ellos ven una serie de píxeles y cada píxel toma

un valor numérico entre 0 y 255, que indica su nivel de color. Podemos trabajar con el modelo

RGB y tendremos 3 valores numéricos, de 0 a 255, para los colores rojo, verde o azul.

Para simplificar y entender el proceso de “convolución”, trabajaremos con imágenes en blanco

y negro y, en este caso, el valor numérico 0 en el píxel significará negro y el valor numérico 255

blanco.

Pues bien, ¿cómo puedo saber si el píxel de valor numérico 175 (ver siguiente imagen) es un eje

o borde en la imagen?

SUSANA OUBIÑA FALCÓN 3

CONVOLUCIÓN Y REDES NEURONALES CONVOLUCIONALES

La única forma consiste en comparar el valor numérico de ese píxel con los valores numéricos de

los pixeles que lo bordean y ver si hay cambios numéricos fuertes en los números de los pixeles

que lo bordean. Es decir, no podemos basarnos en un píxel de forma individual.

Pixeles que bordean al píxel principal

Vamos a entenderlo definiendo un cuadro de 3x3 y que llamaremos núcleo o kernel. A cada una

de las casillas de ese kernel le indicamos un valor numérico. Y vamos a iterar el núcleo en todos

los pixeles de la imagen, uno por uno. Pero en cada uno, en lugar de ver qué valor tienen,

pondremos encima nuestro núcleo. Llamaremos al píxel que estamos revisando nuestro píxel

principal:

SUSANA OUBIÑA FALCÓN 4

CONVOLUCIÓN Y REDES NEURONALES CONVOLUCIONALES

Asignemos los siguientes valores al núcleo:

Núcleo o kernel

Si comenzamos con el primer píxel de la imagen (en su borde), nos encontramos con un

problema: Lo solucionaremos descartando los píxeles de los bordes de la imagen.

SUSANA OUBIÑA FALCÓN 5

CONVOLUCIÓN Y REDES NEURONALES CONVOLUCIONALES

Nosotros ignoraremos los pixeles que bordean la imagen y comenzaremos el proceso con el píxel

de valor 137, considerando este píxel como si fuera el primero:

Ahora colocamos el núcleo con el píxel principal en el valor 137.

Por cada casilla, multiplicaremos el valor numérico del núcleo (color rojo) por el valor del píxel

en escala de grises (que es un número entre 0 y 255) para finalmente, sumar esos productos:

SUSANA OUBIÑA FALCÓN 6

CONVOLUCIÓN Y REDES NEURONALES CONVOLUCIONALES

El resultado en un número que pondremos en una nueva imagen, y en la misma posición que el

píxel que estábamos revisando:

Como el núcleo tiene un valor 0 en las casillas que lo bordean, esto significa que sus valores no

están siendo considerados. Es decir, en la nueva imagen, sólo se toma como información la que

nos proporciona el píxel principal.

SUSANA OUBIÑA FALCÓN 7

CONVOLUCIÓN Y REDES NEURONALES CONVOLUCIONALES

Ahora haremos esta operación con todos y cada uno de los pixeles. Uno por uno y así

sucesivamente.

SUSANA OUBIÑA FALCÓN 8

CONVOLUCIÓN Y REDES NEURONALES CONVOLUCIONALES

Los resultados de esas operaciones las colocaremos en la nueva imagen, también uno por uno:

¿Qué estamos obteniendo? el resultado, aplicando ese núcleo, no es más que la imagen de

partida.

SUSANA OUBIÑA FALCÓN 9

CONVOLUCIÓN Y REDES NEURONALES CONVOLUCIONALES

Y si cambiamos los valores numéricos del kernel de modo que cada casilla tenga el valor 1. Cada

píxel de la nueva imagen se verá afectado por los pixeles que lo bordean y obtenemos una

imagen muy muy desenfocada.

Pero si dividimos el resultado entre los 9 valores que tenemos en el kernel, obtenemos un

desenfoque más suave. Estamos usando un filtro de desenfoque:

SUSANA OUBIÑA FALCÓN 10

CONVOLUCIÓN Y REDES NEURONALES CONVOLUCIONALES

Al poner un 1 en todos los pixeles del kernel, le estamos diciendo que todos los pixeles son

igualmente importantes que el píxel principal. Al hacer una media ponderada (sumando todos y

dividiéndolos entre 9) conseguimos difuminar la imagen.

Por lo tanto, al poner el valor del cálculo en la nueva imagen, como se hace píxel por píxel, cada

nuevo píxel se vuelve un promedio de todos los que tiene alrededor y conseguimos difuminar

los bordes de la imagen y esta pierde claridad y el resultado es una imagen un poco más

desenfocada:

SUSANA OUBIÑA FALCÓN 11

CONVOLUCIÓN Y REDES NEURONALES CONVOLUCIONALES

El proceso de iterar un núcleo a través de cada píxel de una imagen (multiplicar los valores,

sumarlos y pasarlos a una nueva imagen), recibe el nombre de convolución.

¿Cómo podemos usar las convoluciones para detectar ejes?

Como el resultado de las operaciones siempre lo ponemos en una nueva imagen. Si queremos

detectar los ejes, necesitamos que cuando exista un eje se pasen pixeles muy blancos y cuando

no hay ejes, se pasen pixeles muy negros:

Imaginemos este núcleo:

SUSANA OUBIÑA FALCÓN 12

CONVOLUCIÓN Y REDES NEURONALES CONVOLUCIONALES

Como debemos ejecutarlo píxel a píxel, lo que hará es que cuando el resultado del cálculo sea

muy alto (que ocurrirá cuando tengamos mucha diferencia entre el píxel central y los que lo

bordean) lo tomará como blanco, y cuando el resultado sea muy pequeño (que ocurrirá cuando

los pixeles sean muy similares), lo tomará como negro. Un resultado alto significa blanco y un

resultado pequeño, negro.

Si los valores de los pixeles son muy similares, el resultado es negro:

-99-104-101-103-105-102-97-98+(100x8)=-9

SUSANA OUBIÑA FALCÓN 13

CONVOLUCIÓN Y REDES NEURONALES CONVOLUCIONALES

Y si son diferentes, el resultado es blanco:

-20-20-100-100-100-20-20-20+(8x20)=-240

Este núcleo aplicado de forma iterativa, con esta simple multiplicación se asegura que, en cada

convolución, la salida nos aporte un valor numérico muy bajo o muy alto. Si aplicamos el núcleo

a la imagen nos da como resultado la siguiente:

Podemos probarlo en vivo en los siguientes links:

• Con una imagen; https://ringa-tech.com/vision01/imagen.html

• Con nuestra cámara web: https://ringa-tech.com/vision01/camara.html

Hasta ahora hemos desenfocado, pero podemos hacer lo contrario y enfocar. El resultado sería

el siguiente:

https://ringa-tech.com/vision01/imagen.html
https://ringa-tech.com/vision01/camara.html

SUSANA OUBIÑA FALCÓN 14

CONVOLUCIÓN Y REDES NEURONALES CONVOLUCIONALES

Filtro de enfoque

Y también podemos realzar

Los kernels (o matrices de convolución) pueden ser matrices de 3x3, de 5x5, etc.

Como los ejes son muy importantes en las redes neuronales convolucionales, se ha seguido

trabajando en la búsqueda de matrices que los detecten mejor. Hay unos detectores de ejes

que son muy eficientes y son el operador Sobel y el algoritmo de Canny. El algoritmo de Canny

es una mejora de Sobel en la detección de bordes.

https://en.wikipedia.org/wiki/Kernel_(image_processing)

SUSANA OUBIÑA FALCÓN 15

CONVOLUCIÓN Y REDES NEURONALES CONVOLUCIONALES

Sobel se basa en el uso de núcleos, pero en lugar de usar sólo uno, utiliza estos dos núcleos:

Uso se especializa en detectar ejes verticales y el otro en detectar ejes horizontales. Si nos damos

cuenta, funcionan un poco diferente a los anteriores porque ignoran el píxel principal:

Con estos núcleos tenemos por separado el resultado del filtro vertical y del horizontal y, por lo

tanto, sabemos, por cada píxel, que valor se le otorga al resultado (convolución) horizontal y al

vertical:

SUSANA OUBIÑA FALCÓN 16

CONVOLUCIÓN Y REDES NEURONALES CONVOLUCIONALES

Si el píxel resulta ser un eje horizontal, obtendrá un valor grande en ese kernel y pequeño en el

vertical. Y tomarán valores positivos o negativos según se desplacen a la derecha o izquierda.

Pero si el píxel forma parte de un eje vertical, será pequeña la componente horizontal y muy

grande la vertical:

SUSANA OUBIÑA FALCÓN 17

CONVOLUCIÓN Y REDES NEURONALES CONVOLUCIONALES

En ejes inclinados, ambos componentes tendrán un valor grande:

Por lo tanto, viendo los resultados de los dos ejes podemos saber si se trata de un eje horizontal,

vertical o inclinado y conocer hacia qué lado apunta el eje. Y esto, píxel por píxel.

La detección de los ejes se reconoce atendiendo a los valores numéricos de sus dos parámetros

principales, que son la magnitud y el ángulo. El valor numérico de la magnitud nos dirá qué

fuerte es el eje y el ángulo nos dirá hacia donde apunta.

La magnitud la podemos calcular usando el teorema de Pitágoras. Pensar que conocemos los

catetos, que son las componentes horizontal y vertical.

SUSANA OUBIÑA FALCÓN 18

CONVOLUCIÓN Y REDES NEURONALES CONVOLUCIONALES

Teorema de Pitágoras

También podemos saber cuál es el ángulo o la orientación del eje usando trigonometría, con la

función inversa a la tangente de un ángulo:

Es decir, con estos dos parámetros podremos definir mejor qué es un eje o un borde de una

imagen.

Las redes neuronales convolucionales (CNN) utilizan filtros convolucionales para extraer o

conocer los objetos que componen la imagen.

SUSANA OUBIÑA FALCÓN 19

CONVOLUCIÓN Y REDES NEURONALES CONVOLUCIONALES

Un ejemplo de redes convolucionales es la clasificación de imágenes. Esa red, tomará una

imagen como entrada y le aplica una serie de filtros convolucionales para detectar características

como bordes, texturas y formas en la imagen. Estas características se combinan en capas

posteriores para realizar la clasificación final de la imagen en una de clases predefinidas, como

por ejemplo perro, gato, ave, etc.

Vamos a entrenar un clasificador multiclase con una red neuronal convolucional para clasificar

el dataset MINIST digits. Los pasos, en Colab con Python podrían ser los siguientes:

1. Importamos las librerías necesarias

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten,

Dense #Para poder implementar nuestras capas convolucionales

from tensorflow.keras.datasets import mnist

from tensorflow.keras.utils import to_categorical

import matplotlib.pyplot as plt

from sklearn.metrics import confusion_matrix,

ConfusionMatrixDisplay

import numpy as np

2. Cargamos el dataset

Cargar el dataset MNIST

(x_train, y_train), (x_test, y_test) = mnist.load_data()

#Podemos ver cuántos datos son y como son:

print(x_train.shape)

print(y_train.shape)

print(x_test.shape)

print(y_test.shape)

Hay 60000 imágenes en los datos de entrenamiento o train y 10000 en los datos de test, y cada

una de 28x28.

SUSANA OUBIÑA FALCÓN 20

CONVOLUCIÓN Y REDES NEURONALES CONVOLUCIONALES

3. Mostramos algunos datos de entrenamiento

Mostrar algunos datos de entrenamiento

plt.figure(figsize=(10, 10))

for i in range(9):

 plt.subplot(3, 3, i + 1)

 plt.imshow(x_train[i], cmap='gray')

 plt.title(f"Etiqueta: {y_train[i]}")

 plt.axis('off')

plt.show()

4. Preprocesamiento de datos: Normalización

Preprocesamiento de datos

x_train = x_train.reshape((x_train.shape[0], 28, 28,

1)).astype('float32') / 255

x_test = x_test.reshape((x_test.shape[0], 28, 28,

1)).astype('float32') / 255

y_train = to_categorical(y_train, 10) # Por ejemplo, la etiqueta 3

se convierte en [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

y_test = to_categorical(y_test, 10)

SUSANA OUBIÑA FALCÓN 21

CONVOLUCIÓN Y REDES NEURONALES CONVOLUCIONALES

Los datos originales del conjunto MNIST (x_train y x_test) tienen dimensiones (60000, 28, 28) y

(10000, 28, 28) respectivamente, porque son imágenes en escala de grises de 28x28 píxeles.

Aquí, añadimos un canal adicional (1) para indicar que son imágenes monocromáticas. El

formato resultante será (número de ejemplos, alto, ancho, canales), que es el formato esperado

por los modelos de TensorFlow/Keras para datos de imágenes.

Los valores de los píxeles originalmente están entre 0 y 255 (valores de intensidad en escala de

grises). Dividir entre 255 escala los valores entre 0 y 1, lo que ayuda a estabilizar el

entrenamiento del modelo y permite que las operaciones matemáticas (como derivadas y

actualizaciones de pesos) sean más eficientes. Y esto se conoce como normalización.

5. Definimos el modelo

Definir el modelo

model = Sequential([

 Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),

 MaxPooling2D((2, 2)),

 Conv2D(64, (3, 3), activation='relu'),

 MaxPooling2D((2, 2)),

 Flatten(),

 Dense(128, activation='relu'),

 Dense(10, activation='softmax')

])

Por lo general, existen varias capas de convolución (para detectar diferentes patrones) y pooling

(redimensionado):

En nuestro modelo, de forma literal, la estructura de capas es la siguiente:

SUSANA OUBIÑA FALCÓN 22

CONVOLUCIÓN Y REDES NEURONALES CONVOLUCIONALES

Definir el modelo

model = Sequential([

 Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),

 MaxPooling2D((2, 2)),

 Conv2D(64, (3, 3), activation='relu'),

 MaxPooling2D((2, 2)),

 Flatten(),

 Dense(128, activation='relu'),

 Dense(10, activation='softmax')

])

Cada bloque de la imagen corresponde a una capa en el modelo, y la información en cada bloque

incluye:

1. Nombre de la capa y tipo:

o conv2d (Convolutional Layer): Capa convolucional para trabajar con imágenes

en 2D y que detecta características espaciales como bordes o texturas.

o max_pooling2d (MaxPooling Layer): Capa de agrupamiento que reduce la

dimensionalidad para mejorar la eficiencia y evitar el sobreajuste.

El pooling podemos entenderlo como una redimensión de la imagen, reduciendo su resolución):

SUSANA OUBIÑA FALCÓN 23

CONVOLUCIÓN Y REDES NEURONALES CONVOLUCIONALES

El maxpooling permite analizar el contenido de una región de la imagen por bloques y elige en

número más alto, es decir, preserva la información más relevante, que corresponderá a un píxel

en la imagen resultante:

o flatten (Flatten Layer): Convierte las características 2D en un vector 1D para

pasarlo a las capas densas.

SUSANA OUBIÑA FALCÓN 24

CONVOLUCIÓN Y REDES NEURONALES CONVOLUCIONALES

Convertimos las imágenes en vectores y eso se conoce como flattering.

o dense (Fully Connected Layer): Capas densas donde se toman las características

y se procesan para generar predicciones.

2. Input Shape (Forma de entrada):

o Muestra cómo llegan los datos a la capa (dimensiones de las imágenes o

características).

3. Output Shape (Forma de salida):

o Describe las dimensiones de los datos después de ser procesados por esa capa.

Detalles del flujo del modelo:

• Primera capa (conv2d): Procesa imágenes de entrada 2D de tamaño (28, 28, 1) (28x28

píxeles, escala de grises). Produce 32 filtros de tamaño (26, 26, 32), reduciendo la

dimensión debido a la convolución. El tamaño del kernel es una matriz de 3x3

Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),

• Pooling (max_pooling2d): Esta capa de agrupamiento reduce las dimensiones a la

mitad, pasando a (13, 13, 32). Sólo toma el pixel con mayor valor de la matriz de 2x2.

MaxPooling2D((2, 2)),

• Segunda capa convolucional (conv2d_1):Como la imagen es más pequeña, en esta

convolución podemos poner más filtros. En este caso le hemos puesto 64 filtros y su

kernel es también de 3x3 Genera 64 filtros de características de tamaño (11, 11, 64).

Conv2D(64, (3, 3), activation='relu'),

SUSANA OUBIÑA FALCÓN 25

CONVOLUCIÓN Y REDES NEURONALES CONVOLUCIONALES

• Segunda capa de pooling (max_pooling2d_1): Nuevamente reduce las dimensiones de

(11,11,64) a la mitad, obteniendo imágenes de (5, 5, 64). Sólo toma el pixel de mayor

valor en una matriz de 2x2.

MaxPooling2D((2, 2)),

• flatten: Convierte la salida (5,5,64) en un vector unidimensional de tamaño 1600=

5x5x64

Flatten(),

• Capa densa (dense): Procesa las características reducidas y produce una representación

de 128 neuronas. Podríamos usar 100 neuronas en lugar de 128, si quisiéramos.

Dense(128, activation='relu'),

SUSANA OUBIÑA FALCÓN 26

CONVOLUCIÓN Y REDES NEURONALES CONVOLUCIONALES

• Última capa densa (dense_1): Genera 10 neuronas, una por cada clase, con activación

softmax para obtener probabilidades.

Dense(10, activation='softmax')

6. Compilamos el modelo

Compilar el modelo

model.compile(optimizer='adam',

 loss='categorical_crossentropy',

 metrics=['accuracy'])

7. Entrenamos el modelo

Entrenar el modelo

history = model.fit(x_train, y_train, epochs=10, batch_size=32,

validation_split=0.2)

SUSANA OUBIÑA FALCÓN 27

CONVOLUCIÓN Y REDES NEURONALES CONVOLUCIONALES

8. Evaluar el modelo.

Evaluar el modelo

test_loss, test_acc = model.evaluate(x_test, y_test)

print(f"\nPérdida en el conjunto de prueba: {test_loss}")

print(f"Precisión en el conjunto de prueba: {test_acc}")

9. Graficar las métricas: precisión y pérdidas

Graficar las métricas

import matplotlib.pyplot as plt

Precisión

plt.plot(history.history['accuracy'], label='Precisión en

entrenamiento')

plt.plot(history.history['val_accuracy'], label='Precisión en

validación')

plt.xlabel('Épocas')

plt.ylabel('Precisión')

plt.legend()

plt.show()

Pérdida

plt.plot(history.history['loss'], label='Pérdida en entrenamiento')

plt.plot(history.history['val_loss'], label='Pérdida en

validación')

plt.xlabel('Épocas')

plt.ylabel('Pérdida')

plt.legend()

plt.show()

SUSANA OUBIÑA FALCÓN 28

CONVOLUCIÓN Y REDES NEURONALES CONVOLUCIONALES

10. Matriz de confusión: La idea es conocer qué dígitos se han clasificado mejor

Convertir las predicciones en etiquetas

predictions = model.predict(x_test)

predicted_classes = np.argmax(predictions, axis=1)

SUSANA OUBIÑA FALCÓN 29

CONVOLUCIÓN Y REDES NEURONALES CONVOLUCIONALES

true_classes = np.argmax(y_test, axis=1)

Calcular matriz de confusión

cm = confusion_matrix(true_classes, predicted_classes)

cmd = ConfusionMatrixDisplay(cm, display_labels=range(10))

Mostrar matriz de confusión

cmd.plot(cmap=plt.cm.Blues)

plt.xlabel("Predicción")

plt.ylabel("Valor Real")

plt.title("Matriz de Confusión")

plt.show()

Fijémonos, por ejemplo, en el número 5:

• Observamos que lo ha clasificado bien 882 veces, pero ha fallado 7 equivocando su

predicción y confundiéndolo con un 3.

SUSANA OUBIÑA FALCÓN 30

CONVOLUCIÓN Y REDES NEURONALES CONVOLUCIONALES

• Vemos que el número en el que más se ha equivocado ha sido el 9. Nada más y nada

menos que 13 veces lo ha confundido con el número 7:

