CONVOLUCION Y REDES NEURONALES CONVOLUCIONALES

Comenzaremos con el proceso de convolucién viendo el problema de por qué se inventé.

¢Cémo procesamos los humanos una imagen? Simplemente, detectando los ejes o las lineas de

los objetos que la conforman.

Los ejes y bordes nos ayudan a a saber dénde estan los objetos que existen en toda imagen.

Nuestro ojo esta acostumbrado a detectarlos. Para él es sencillo.

Informaticamente, la informacién

de una imagen visual se ---------
(7

_ L 5 1 P N LY
descompone en una matriz de

Do component
image Pane
pixeles dispuestos en filas y -
; [255,0,255)
columnas. Cada pixel representa
Green component
. Image Pune
un punto de la imagen en un
sistema bidimensional y contiene o VAT SCUSo Pixcl, = (127,255, 0]

informacidn sobre el color (siendo Piued of an KRGS image are Krmed foam the Cormeipcading plael of the thees cemponant inages

el modelo RGB el mas comun en IA), y la intensidad luminosa y la opacidad. Cada una de las tres
componentes (rojo, verde o azul) tiene un valor numérico entre 0 y 255 que indica la intensidad

de ese color especifico en el pixel.

Si nuestro ojo detecta un cambio brusco de color (y valor entre pixeles

cercanos), eso es un eje.

1
SUSANA OUBINA FALCON 1

CONVOLUCION Y REDES NEURONALES CONVOLUCIONALES

Los ordenadores no ven lo mismo que nosotros, ellos ven una serie de pixeles y cada pixel toma

un valor numérico entre 0 y 255, que indica su nivel de color. Podemos trabajar con el modelo

RGB y tendremos 3 valores numéricos, de 0 a 255, para los colores rojo, verde o azul.

Para simplificar y entender el proceso de “convolucién”, trabajaremos con imagenes en blanco

y negro y, en este caso, el valor numérico 0 en el pixel significara negro y el valor numérico 255

blanco.

Imagen Original

Valores de Pixeles

1NNBIBINYR LR R22RRR VDD LR P!
177181819191 RR R R L2 2RRR VRN L L RDVVRE

2P PR PRRRRE2 72088282 7272829308 13 1303080308C
220N PRRRVEA2RVLRRVVBBBBBRBBBI
2P0V PVRRERXT2RRRVRBBBBIBBB BB
223V PRRRERT2RRLRRBBBBBBIBBBBB
23R PRRREA2RBBRLBBBIBLBLHLIBBBL
223N LVRRT72RBBHBBRBBBHLBBBHLLL44
220N PVRRT2RBBIBOBRB BIBHBBBBBBHE
2PNRVREE2T7272960MB0306 13138 BBEBHBEBEIEB37373737
25080526260727273080808 13 BB B BE3BEIBEIBB/BB73E

Pues bien, écomo puedo saber si el pixel de valor numérico 175 (ver siguiente imagen) es un eje

o borde en la imagen?

SUSANA OUBINA FALCON

CONVOLUCION Y REDES NEURONALES CONVOLUCIONALES

La Unica forma consiste en comparar el valor numérico de ese pixel con los valores numéricos de
los pixeles que lo bordean y ver si hay cambios numéricos fuertes en los nimeros de los pixeles

que lo bordean. Es decir, no podemos basarnos en un pixel de forma individual.

Pixeles que bordean al pixel principal

Vamos a entenderlo definiendo un cuadro de 3x3 y que llamaremos nucleo o kernel. A cada una
de las casillas de ese kernel le indicamos un valor numérico. Y vamos a iterar el nucleo en todos
los pixeles de la imagen, uno por uno. Pero en cada uno, en lugar de ver qué valor tienen,
pondremos encima nuestro nucleo. Llamaremos al pixel que estamos revisando nuestro pixel

principal:

]
SUSANA OUBINA FALCON 3

CONVOLUCION Y REDES NEURONALES CONVOLUCIONALES

Asignemos los siguientes valores al nucleo:

0 0 0
0 1 0
0 |0 0

Nucleo o kernel

Si comenzamos con el primer pixel de la imagen (en su borde), nos encontramos con un

problema: Lo solucionaremos descartando los pixeles de los bordes de la imagen.

SUSANA OUBINA FALCON 4

CONVOLUCION Y REDES NEURONALES CONVOLUCIONALES

Nosotros ignoraremos los pixeles que bordean laimagen y comenzaremos el proceso con el pixel

de valor 137, considerando este pixel como si fuera el primero:

128 127

133 126

132 126

128 127

Ahora colocamos el nucleo con el pixel principal en el valor 137.

126 120

126 122

127 122

124 120

Por cada casilla, multiplicaremos el valor numérico del nucleo (color rojo) por el valor del pixel

en escala de grises (que es un numero entre 0 y 255) para finalmente, sumar esos productos:

]
SUSANA OUBINA FALCON 5

CONVOLUCION Y REDES NEURONALES CONVOLUCIONALES

139
138

135
138
137
137
135
138
135

Ccoo0O0O=0000
|
-l o000 =0000

X X X X X X X X X

37

El resultado en un nimero que pondremos en una nueva imagen, y en la misma posicion que el

pixel que estdbamos revisando:

Nueva imagen

——

137 ‘

e]

Como el nucleo tiene un valor 0 en las casillas que lo bordean, esto significa que sus valores no

estan siendo considerados. Es decir, en la nueva imagen, sélo se toma como informacién la que

nos proporciona el pixel principal.

SUSANA OUBINA FALCON 6

CONVOLUCION Y REDES NEURONALES CONVOLUCIONALES

139
138

135
138

©cocoo

X X X X
|

cooo

137
135
138
135

|
cooo

(= = B = B =
x X X X

-
L
~

Ahora haremos esta operaciéon con todos y cada uno de los pixeles. Uno por uno y asi

sucesivamente.

SUSANA OUBINA FALCON 7

CONVOLUCION Y REDES NEURONALES CONVOLUCIONALES

1218 115 | 110

120 118 112

122 118 113

122 119" 113

Los resultados de esas operaciones las colocaremos en la nueva imagen, también uno por uno:

Nueva imagen

¢Qué estamos obteniendo? el resultado, aplicando ese nucleo, no es mas que la imagen de

partida.

]
SUSANA OUBINA FALCON 8

CONVOLUCION Y REDES NEURONALES CONVOLUCIONALES

Imagen original Nueva imagei:
Nucleo
o [o TJo
o [t o
o fo o

Y si cambiamos los valores numéricos del kernel de modo que cada casilla tenga el valor 1. Cada
pixel de la nueva imagen se verd afectado por los pixeles que lo bordean y obtenemos una

imagen muy muy desenfocada.

Imagen original Nueva imagen
Nucleo
K 1 / &
,
4 "
p '
T 1|1 e, "
T 1 |1 '
H.:-‘ /

Pero si dividimos el resultado entre los 9 valores que tenemos en el kernel, obtenemos un

desenfoque mas suave. Estamos usando un filtro de desenfoque:

SUSANA OUBINA FALCON

CONVOLUCION Y REDES NEURONALES CONVOLUCIONALES

Imagen original Nueva imagen
Nucleo
T 1
L 1
1 |1 1

/9

Al poner un 1 en todos los pixeles del kernel, le estamos diciendo que todos los pixeles son
igualmente importantes que el pixel principal. Al hacer una media ponderada (sumando todos y

dividiéndolos entre 9) conseguimos difuminar la imagen.

Resultado

(Cada casilla * 1) /7 9.
(182*1 + 183*1 + 88™1 + 1911 + 175*1 +
661 + 188*1 + 157*1 4+ 97*1) / 9 = 147

Por lo tanto, al poner el valor del calculo en la nueva imagen, como se hace pixel por pixel, cada
nuevo pixel se vuelve un promedio de todos los que tiene alrededor y conseguimos difuminar
los bordes de la imagen y esta pierde claridad y el resultado es una imagen un poco mas

desenfocada:

1
SUSANA OUBINA FALCON 10

CONVOLUCION Y REDES NEURONALES CONVOLUCIONALES
-]

El proceso de iterar un ndcleo a través de cada pixel de una imagen (multiplicar los valores,

sumarlos y pasarlos a una nueva imagen), recibe el nombre de convolucion.
¢Cémo podemos usar las convoluciones para detectar ejes?

Como el resultado de las operaciones siempre lo ponemos en una nueva imagen. Si queremos
detectar los ejes, necesitamos que cuando exista un eje se pasen pixeles muy blancos y cuando

no hay ejes, se pasen pixeles muy negros:

Imaginemos este ncleo:

=3 -1 =4
=3 8 =g
- -1 -y

1
SUSANA OUBINA FALCON 11

CONVOLUCION Y REDES NEURONALES CONVOLUCIONALES

Como debemos ejecutarlo pixel a pixel, lo que hara es que cuando el resultado del calculo sea
muy alto (que ocurrird cuando tengamos mucha diferencia entre el pixel central y los que lo
bordean) lo tomara como blanco, y cuando el resultado sea muy pequefio (que ocurrird cuando
los pixeles sean muy similares), lo tomara como negro. Un resultado alto significa blanco y un

resultado pequeiio, negro.

-1 -1 |-1
T = Diferencia entre pixeles = Blanco
= T Pixeles similares = negro

Nucleo
(Kernel)

Si los valores de los pixeles son muy similares, el resultado es negro:

Resultado

9

(negro)

Nucleo)
(Kernel) No hay eje

-99-104-101-103-105-102-97-98+(100x8)=-9

SUSANA OUBINA FALCON 12

CONVOLUCION Y REDES NEURONALES CONVOLUCIONALES

Y si son diferentes, el resultado es blanco:

o Resultado

20 m 240

(blanco)
20 20

[Kerneh Si hay eje

-20-20-100-100-100-20-20-20+(8x20)=-240

Este nucleo aplicado de forma iterativa, con esta simple multiplicacion se asegura que, en cada
convolucion, la salida nos aporte un valor numérico muy bajo o muy alto. Si aplicamos el nucleo

a la imagen nos da como resultado la siguiente:

-1 1]-1
-1 8 [-1
-1 -1 [

Podemos probarlo en vivo en los siguientes links:

e Con unaimagen; https://ringa-tech.com/vision01/imagen.html

e Con nuestra cdmara web: https://ringa-tech.com/vision01/camara.html

Hasta ahora hemos desenfocado, pero podemos hacer lo contrario y enfocar. El resultado seria

el siguiente:

1
SUSANA OUBINA FALCON 13

https://ringa-tech.com/vision01/imagen.html
https://ringa-tech.com/vision01/camara.html

CONVOLUCION Y REDES NEURONALES CONVOLUCIONALES

Filtro de enfoque

Enfoque
0 -1 0
-1 5 -1
0 -1 0

Y también podemos realzar

Los kernels (o matrices de convolucidn) pueden ser matrices de 3x3, de 5x5, etc.

Como los ejes son muy importantes en las redes neuronales convolucionales, se ha seguido
trabajando en la bisqueda de matrices que los detecten mejor. Hay unos detectores de ejes
que son muy eficientes y son el operador Sobel y el algoritmo de Canny. El algoritmo de Canny

es una mejora de Sobel en la deteccién de bordes.

SUSANA OUBINA FALCON 14

https://en.wikipedia.org/wiki/Kernel_(image_processing)

CONVOLUCION Y REDES NEURONALES CONVOLUCIONALES

Sobel se basa en el uso de nucleos, pero en lugar de usar sélo uno, utiliza estos dos nucleos:

Operador Sobel
ot 0 1 =3 -2 -
=2 |0 2 0 0 0
= 0 1 1 2 1
Ejes Ejes
verticales horizontales

Uso se especializa en detectar ejes verticales y el otro en detectar ejes horizontales. Si nos damos

cuenta, funcionan un poco diferente a los anteriores porque ignoran el pixel principal:

-1 0 1 =1 o - ok

Con estos nucleos tenemos por separado el resultado del filtro vertical y del horizontal y, por lo
tanto, sabemos, por cada pixel, que valor se le otorga al resultado (convolucién) horizontal y al

vertical:

SUSANA OUBINA FALCON 15

CONVOLUCION Y REDES NEURONALES CONVOLUCIONALES

Resultado de convoluciones

Resultado vertical

Resultado horizontal

Si el pixel resulta ser un eje horizontal, obtendra un valor grande en ese kernel y pequefio en el

vertical. Y tomaran valores positivos o negativos segln se desplacen a la derecha o izquierda.

Eje horizontq|

Resultado horizontal

Pero si el pixel forma parte de un eje vertical, sera pequefia la componente horizontal y muy

grande la vertical:

Resultado vertical

SUSANA OUBINA FALCON 16

CONVOLUCION Y REDES NEURONALES CONVOLUCIONALES

En ejes inclinados, ambos componentes tendran un valor grande:

Resultado vertical

Resultado horizontal

Por lo tanto, viendo los resultados de los dos ejes podemos saber si se trata de un eje horizontal,

vertical o inclinado y conocer hacia qué lado apunta el eje. Y esto, pixel por pixel.

La deteccidn de los ejes se reconoce atendiendo a los valores numéricos de sus dos pardmetros
principales, que son la magnitud y el angulo. El valor numérico de la magnitud nos dira qué

fuerte es el eje y el angulo nos dird hacia donde apunta.

Magnitud Angulo

¢Qué tan fuerte es el eje? ¢Hacia donde apunta el eje?

20 20

w [

20 20

La magnitud la podemos calcular usando el teorema de Pitdgoras. Pensar que conocemos los

catetos, que son las componentes horizontal y vertical.

1
SUSANA OUBINA FALCON 17

CONVOLUCION Y REDES NEURONALES CONVOLUCIONALES

Magni‘l‘ud ¢Qué tan fuerte es el eje?

Magnitud = \/ Horizontal” + Vertical

Teorema de Pitagoras

También podemos saber cual es el dngulo o la orientacidn del eje usando trigonometria, con la

funcién inversa a la tangente de un angulo:

¢Hacia donde apunta el eje?

Vertical

= arctan (-

Horizontal)

Es decir, con estos dos parametros podremos definir mejor qué es un eje o un borde de una

imagen.

Las redes neuronales convolucionales (CNN) utilizan filtros convolucionales para extraer o

conocer los objetos que componen la imagen.

SUSANA OUBINA FALCON 18

CONVOLUCION Y REDES NEURONALES CONVOLUCIONALES

Un ejemplo de redes convolucionales es la clasificacion de imagenes. Esa red, tomara una
imagen como entraday le aplica una serie de filtros convolucionales para detectar caracteristicas
como bordes, texturas y formas en la imagen. Estas caracteristicas se combinan en capas
posteriores para realizar la clasificacidn final de la imagen en una de clases predefinidas, como

por ejemplo perro, gato, ave, etc.

Vamos a entrenar un clasificador multiclase con una red neuronal convolucional para clasificar

el dataset MINIST digits. Los pasos, en Colab con Python podrian ser los siguientes:
1. Importamos las librerias necesarias

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten,
Dense #Para poder implementar nuestras capas convolucionales

from tensorflow.keras.datasets import mnist

from tensorflow.keras.utils import to categorical

import matplotlib.pyplot as plt

from sklearn.metrics import confusion matrix,
ConfusionMatrixDisplay

import numpy as np

2. Cargamos el dataset

Cargar el dataset MNIST

(x_train, y train), (x test, y test) = mnist.load data()
#Podemos ver cuantos datos son y como son:

print (x_train.shape)

print (y train.shape)

print (x test.shape)

print (y test.shape)

—):v Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz
11490434/11490434 2s Qus/step
(60000, 28, 28)
(60000,)
(10000, 28, 28)
(10000,)

Hay 60000 imagenes en los datos de entrenamiento o train y 10000 en los datos de test, y cada

una de 28x28.

1
SUSANA OUBINA FALCON 19

CONVOLUCION Y REDES NEURONALES CONVOLUCIONALES

3. Mostramos algunos datos de entrenamiento

Mostrar algunos datos de entrenamiento

plt.figure(figsize=(10, 10))

for i in range(9):
plt.subplot (3, 3, i + 1)
plt.imshow(x train[i], cmap='gray')
plt.title(f"Etiqueta: {y train[i]}")
plt.axis ('off")

plt.show ()

Etiqueta: [0. 0. 0. 0. 0. 1. 0. 0. 0. Btiqueta: [1. 0. 0. 0. 0. 0. 0. 0. 0. Etijueta: [0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]

o

)

Etiqueta: 5 Etiqueta: 0 Etiqueta: 4

4. Preprocesamiento de datos: Normalizacion

Preprocesamiento de datos

x _train = x train.reshape((x train.shape[0], 28, 28,
1)) .astype('float32') / 255

X _test = x test.reshape((x test.shape[0], 28, 28,
1)) .astype('float32') / 255

y train = to categorical(y train, 10) # Por ejemplo, la etiqueta 3
se convierte en [0, O, O, 1, O, O, O, 0, O, O]
y_test = to categorical(y test, 10)

1
SUSANA OUBINA FALCON 20

CONVOLUCION Y REDES NEURONALES CONVOLUCIONALES

Los datos originales del conjunto MNIST (x_train y x_test) tienen dimensiones (60000, 28, 28) y
(10000, 28, 28) respectivamente, porque son imagenes en escala de grises de 28x28 pixeles.
Aqui, afiadimos un canal adicional (1) para indicar que son imagenes monocromaticas. El
formato resultante serd (nimero de ejemplos, alto, ancho, canales), que es el formato esperado

por los modelos de TensorFlow/Keras para datos de imagenes.

Los valores de los pixeles originalmente estan entre 0 y 255 (valores de intensidad en escala de
grises). Dividir entre 255 escala los valores entre 0 y 1, lo que ayuda a estabilizar el
entrenamiento del modelo y permite que las operaciones matematicas (como derivadas y

actualizaciones de pesos) sean mas eficientes. Y esto se conoce como normalizacién.
5. Definimos el modelo

Definir el modelo
model = Sequential ([
Conv2D(32, (3, 3), activation='relu', input shape=(28, 28, 1)),
MaxPooling2D ((2, 2)),
Conv2D (64, (3, 3), activation='relu'),
MaxPooling2D ((2, 2)),
Flatten(),
Dense (128, activation='relu'),
Dense (10, activation='softmax')

S
o
F
3
M
A
X

CONVOLUCION POOLING CLASIFICACION

RED NEURONAL

Por lo general, existen varias capas de convolucion (para detectar diferentes patrones) y pooling
(redimensionado):

En nuestro modelo, de forma literal, la estructura de capas es la siguiente:

1
SUSANA OUBINA FALCON 21

CONVOLUCION Y REDES NEURONALES CONVOLUCIONALES

Definir el modelo
model = Sequential ([
Conv2D (32, (3, 3), activation='relu', input shape=(28, 28, 1)),
MaxPooling2D((2, 2)),
Conv2D (64, (3, 3), activation='relu'),
MaxPooling2D((2, 2)),
Flatten (),
Dense (128, activation='relu'),
Dense (10, activation='softmax')

1)
Cada bloque de laimagen corresponde a una capa en el modelo, y la informacién en cada bloque
incluye:
1. Nombre de la capay tipo:
o conv2d (Convolutional Layer): Capa convolucional para trabajar con imagenes
en 2D y que detecta caracteristicas espaciales como bordes o texturas.
o max_pooling2d (MaxPooling Layer): Capa de agrupamiento que reduce la

dimensionalidad para mejorar la eficiencia y evitar el sobreajuste.

El pooling podemos entenderlo como una redimensién de la imagen, reduciendo su resolucidn):

POOLING

1
SUSANA OUBINA FALCON 22

CONVOLUCION Y REDES NEURONALES CONVOLUCIONALES

MAXPOOLING

El maxpooling permite analizar el contenido de una regién de la imagen por bloques y elige en
numero mas alto, es decir, preserva la informaciéon mas relevante, que correspondera a un pixel

en la imagen resultante:

o flatten (Flatten Layer): Convierte las caracteristicas 2D en un vector 1D para

pasarlo a las capas densas.

4
i
L4

v T'I!ILA L 5, j ‘
YRR A

RLE T T Y

*

X>Z470W0m

PR), ST

bl T i
O o~z op(o - o

S (7

SUSANA OUBINA FALCON 23

CONVOLUCION Y REDES NEURONALES CONVOLUCIONALES

Convertimos las imagenes en vectores y eso se conoce como flattering.
o dense (Fully Connected Layer): Capas densas donde se toman las caracteristicas
y se procesan para generar predicciones.
2. Input Shape (Forma de entrada):
o Muestra como llegan los datos a la capa (dimensiones de las imagenes o
caracteristicas).
3. Output Shape (Forma de salida):
o Describe las dimensiones de los datos después de ser procesados por esa capa.
Detalles del flujo del modelo:
e Primera capa (conv2d): Procesa imdgenes de entrada 2D de tamafio (28, 28, 1) (28x28
pixeles, escala de grises). Produce 32 filtros de tamaio (26, 26, 32), reduciendo la

dimensidn debido a la convolucion. El tamano del kernel es una matriz de 3x3

Conv2D (32, (3, 3), activation='relu',6 input shape=(28, 28, 1)),

conv2d (Conv2D)

Input shape: (None, 28, 28, 1) | Output shape: (None, 26, 26, 32)

l

e Pooling (max_pooling2d): Esta capa de agrupamiento reduce las dimensiones a la

mitad, pasando a (13, 13, 32). Sélo toma el pixel con mayor valor de la matriz de 2x2.

MaxPooling2D((2, 2)),

max_pooling2d (MaxPooling2D)

Input shape: (None, 26, 26, 32) | Output shape: (None, 13, 13, 32)

I

e Segunda capa convolucional (conv2d_1):Como la imagen es mas pequefia, en esta

convolucién podemos poner mas filtros. En este caso le hemos puesto 64 filtros y su

kernel es también de 3x3 Genera 64 filtros de caracteristicas de tamaiio (11, 11, 64).

Conv2D (64, (3, 3), activation='relu'),

1
SUSANA OUBINA FALCON 24

CONVOLUCION Y REDES NEURONALES CONVOLUCIONALES

conv2d_1 (Conv2D)

Input shape: (None, 13, 13, 32) | Output shape: (None, 11, 11, 64)

l

e Segunda capa de pooling (max_pooling2d_1): Nuevamente reduce las dimensiones de

(11,11,64) a la mitad, obteniendo imagenes de (5, 5, 64). SAlo toma el pixel de mayor

valor en una matriz de 2x2.

MaxPooling2D((2, 2)),

max_pooling2d_1 (MaxPooling2D)

Input shape: (None, 11, 11, 64) | Output shape: (None, 5, 5, 64)

l

e flatten: Convierte la salida (5,5,64) en un vector unidimensional de tamafio 1600=

5x5x64

Flatten (),

flatten (Flatten)

Input shape: (None, 5, 5, 64) | Output shape: (None, 1600)

I

e Capadensa (dense): Procesa las caracteristicas reducidas y produce una representacion

de 128 neuronas. Podriamos usar 100 neuronas en lugar de 128, si quisiéramos.

Dense (128, activation='relu'),

1
SUSANA OUBINA FALCON 25

CONVOLUCION Y REDES NEURONALES CONVOLUCIONALES

dense (Dense)

Input shape: (None, 1600) | Output shape: (None, 128)

!

o Ultima capa densa (dense_1): Genera 10 neuronas, una por cada clase, con activacién

softmax para obtener probabilidades.

Dense (10, activation='softmax')

dense_1 (Dense)

Input shape: (None, 128) | Output shape: (None, 10)

6. Compilamos el modelo

Compilar el modelo
model.compile (optimizer="adam',
loss="'categorical crossentropy',

metrics=["'accuracy'])

7. Entrenamos el modelo
Entrenar el modelo

history = model.fit(x train, y train, epochs=10, batch size=32,
validation split=0.2)

o Epoch 4/10
1500/1509 ——————————— — 4s 3ms/step - accuracy: ©.9919 - loss: ©.0251 - val accuracy: ©.9878 - val loss: 0.0458
5~ Epoch 5/10
~ 1508/1500 —————————————————— 65 3ms/step - accuracy: ©.9951 - loss: ©.0150 - val_accuracy: 0.9884 - val_loss: 0.0465
Epoch 6/10
1508/1509 —————————— 4s 3ms/step - accuracy: ©.9957 - loss: ©.0125 - val accuracy: ©.9881 - val loss: 0.0478
Epoch 7/10
1500/1500 ———————————————— 65 3ms/step - accuracy: ©.9967 - loss: 0.0096 - val accuracy: ©.9897 - val loss: 0.0410
Epoch 8/180
1500/1580 ———————— 4s 3ms/step - accuracy: ©.9979 - loss: ©.0069 - val accuracy: 0.9899 - val loss: 0.0467
Epoch 9/10
1500/1500 =———————————————————— [s 3ms/step - accuracy: ©.9978 - loss: 0.0064 - val_accuracy: ©.9889 - val_loss: 0.0525
Epoch 108/1@
1508/1589 ————————— 6s 3ms/step - accuracy: ©.9979 - loss: 0.0068 - val accuracy: ©.9891 - val loss: 0.0540

1
SUSANA OUBINA FALCON 26

CONVOLUCION Y REDES NEURONALES CONVOLUCIONALES

8. Evaluar el modelo.

Evaluar el modelo

test loss, test acc = model.evaluate(x test, y test)
print (f"\nPérdida en el conjunto de prueba: {test loss}")
print (f"Precisién en el conjunto de prueba: {test acc}")

E{} 313/313 2s 4ms/step - accuracy: ©.9857 - loss: ©.0643

Pérdida en el conjunto de prueba: ©.05203856900334358
Precision en el conjunto de prueba: 0.9886000156402588

9. Graficar las métricas: precisién y pérdidas

Graficar las métricas
import matplotlib.pyplot as plt

Precisidn

plt.plot (history.history['accuracy'], label='Precisidén en
entrenamiento')

plt.plot (history.history['val accuracy'], label='Precisidén en
validacidén')

plt.xlabel ('Epocas')

plt.ylabel ('Precisién')

plt.legend()

plt.show()

Pérdida

plt.plot (history.history['loss'], label='Pérdida en entrenamiento')
plt.plot (history.history['val loss'], label='Pérdida en
validacién')

plt.xlabel ('Epocas"')

plt.ylabel ('Pérdida')

plt.legend()

plt.show ()

1
SUSANA OUBINA FALCON 27

CONVOLUCION Y REDES NEURONALES CONVOLUCIONALES

0.99 -
< 0.98 1
N
un
D
&
0.97 -
0.96 -1
—— Precision en entrenamiento
—— Precision en validacion
0 2 4 6 8
Epocas
—— Pérdida en entrenamiento
0.14 - —— Pérdida en validacion
0.12 1
0.10 A
°
@ 0.08 A
&
0.06 1
0.04 A
0.02 -

0 2 4 6 8
Epocas

10. Matriz de confusidn: La idea es conocer qué digitos se han clasificado mejor

Convertir las predicciones en etiquetas
predictions = model.predict (x test)
predicted classes = np.argmax(predictions, axis=1)

1
SUSANA OUBINA FALCON 28

CONVOLUCION Y REDES NEURONALES CONVOLUCIONALES

true classes = np.argmax(y test, axis=l)

Calcular matriz de confusiédn
cm = confusion matrix(true classes, predicted classes)
cmd = ConfusionMatrixDisplay(cm, display labels=range (10))

Mostrar matriz de confusidn
cmd.plot (cmap=plt.cm.Blues)
plt.xlabel ("Prediccidén")
plt.ylabel ("Valor Real')
plt.title("Matriz de Confusidén")
plt.show()

Matriz de Confusion
oyl o o o o o o0 1 O 0
1000
800
o
& 600
S
s
L 400
- 200
94 0 0o 1 1 8 8 0 13 2
]]] T 1 1 1 1 | 0
o 1 2 3 4 5 6 7 8 9
Prediccion

Fijémonos, por ejemplo, en el nimero 5:

e Observamos que lo ha clasificado bien 882 veces, pero ha fallado 7 equivocando su
prediccién y confundiéndolo con un 3.

1
SUSANA OUBINA FALCON 29

CONVOLUCION Y REDES NEURONALES CONVOLUCIONALES

Matriz de Confusion
oX¥l] o o o o o o0 1 0 O
1000
800
e
& 600
S
S
L 400
L 200
94 0 0o 1 1 8]lsglo 13 2
T T T T T 1 T T T '_-0
o 1 2 3 4 5 6 7 8 9
Prediccion

e Vemos que el nimero en el que mas se ha equivocado ha sido el 9. Nada mas y nada

menos que 13 veces lo ha confundido con el numero 7:

Matriz de Confusion
oyl o o o o 0 0 1 0 O
1000
14 0 peegsl 1 1 0 2 0 2 0 0
242 of¥EH o 1 o 0o 6 1 o0
800
3{d0 o ofEE o 3 0 4 0 0
=
gtl-' 0 0 0 0 BEll 0 0 1 0 4 600
2511 o o 7 oEHA 1 1 o0 o
>
6411 2 1 o 2 s EEH o 1 o0 L 400
740 o 1 o o o o jEH 1 1
gdla4 0o 1 0o o 3 o 5 EX a - 200
9
L Lo
Prediccion

]
SUSANA OUBINA FALCON 30

