Los procesos geológicos internos.

El magmatismo

- 1. Procesos geológicos internos: Son aquellos causados por el calor interior del planeta.
- 2. Clasificación de los procesos geológicos internos atendiendo la modificación que sufren las rocas:
- **a) Magmatismo:** Fusión de las *rocas produciendo magma*. No magma podemos encontrar gases y materiales no fundidos.
- **b) Metamorfismo:** Proceso en el que se originan cambios *mineralógicos*, *texturales y estructurales* en las rocas deben a cambios en la **temperatura y en la presión**. En el metamorfismo no se produce la fusión de las rocas.

Nota: Textura (describe el tamaño y la forma de granos minerales que constituyen las rocas) y estructura (hace referencia a distribución y ordenación de los cristales) de las rocas.

 $\underline{https://petroignea.wordpress.com/esta-es-la-segunda-pagina/texturas-en-rocas-plutonicas/texturas-quedefinen-el-tipo-de-roca-ignea/}$

- **c) Esfuerzos tectónicos:** Las rocas sometidas a esfuerzos de compresión y distensión experimentan deformaciones como plegamientos y fracturas.
- 3. Breve (muy breve) introducción a los minerales (necesario antes de estudiar las rocas)

Los minerales son combinaciones de elementos geoquímicos que:

- Son sólidos (no se incluye como mineral el petróleo)
- Son inorgánicos (ámbar, conchas...etc no son minerales)
- Se forman mediante procesos naturales.
- Tienen una composición química homogénea
- Son estables en cierto intervalo de condiciones
- Tienen estructura **cristalina:** Los componentes de un mineral forman una estructura interna tridimensional y simétrica.

Los mineraloides **cumplen todas las condiciones de los minerales pero no la estructura cristalina.**

Algunas de las principales propiedades de los minerales son:

- Fractura: Exfoliación, concoidea, cúbica...
- Densidad
- **Punto de fusión:** temperatura a que un mineral funde.
- **Dureza:** resistencia a ser rayado (escala de Mohos)
- Brillo
- Color de la raya.....

Clasificación de los minerales:

1. No silicatos:

- la) Elementos nativos: oro, plata, cobre..
- b) Haluros: Compuestos por halógenos y metales (halita)
- c) Súlfidos. Combinaciones de azufre, selenio, telurio arsénico con un elemento metálico. Ej. Galena, pirita
- d) Carbonatos: formados por carbonato y un elemento metálico. Calcita
- y) Oxisales no carbónicos: Fosfatos (apatita), sulfatos (yeso), volframatos...
- f) Óxidos y hidróxidos:Combinaciones de oxigeno o del grupo (OH)- con metales. Hematita o goethita..

2. Silicatos:

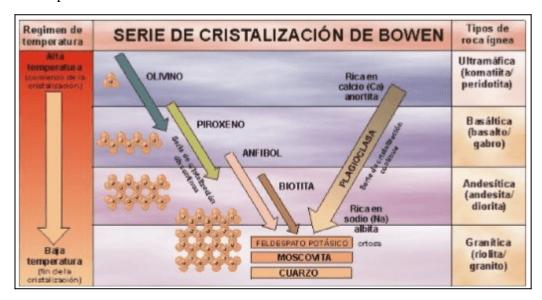
rupo estructural	Representación	Nº O compar- tidos por Si	Unidad Si - O de repetición	Si:O	Ejemplo	07
Nesosilicatos		0	(SiO ₄)4-	1:4	Olivino	6
Sorosilicatos		1	(Si ₂ O ₇)6.	1:3,5	Hemimorfit	а
Ciclosilicatos		2	(SiO ₃) _n ²⁻	1:3	Turmalina	
Cadena simple		. 2	(\$iO ₃) ²⁻	1:3	Piroxenos	
cadena doble		2,5	(Si ₄ O ₁₁)6-	1:2.75	Anfiboles	
Filosilicatos		3	(\$i ₂ O ₅) ²⁻	1:2.5	Micas	
Tectosilicatos		4	(SiO ₂)°	1:2	Cuarzo	

- Feldespatos: tectosilicatos.

Las plagioclasas son un grupo y feldespatos con sodio y calcio. (Albita $NaAlSi_3O_8$ – anortita $CaAl_2Si_2O_8$)

Minerales de las rocas magmáticas: son principalmente silicatos.

4. El magmatismo


4.1. Magma

Los **magmas** son masas fundidas con una porción variable de gases disueltos y entre un 35% y un 70% de sílice (SiO₂).

Las tres fracciones que componen los magmas son:

- **Gases:** Como vapor de agua, dióxido de carbono y otros como óxidos de azufre, óxidos de nitrógeno, argón...
 - Líquidos: Forman la parte principal del magma, componen la la cámara magmática.
- **Fracción sólida:** Fragmentos desprendidos de la roca encajante, restos sin fundir de la roca que formó el magma y cristales que comenzaron el proceso de consolidación.

La orden en la que se **forman los silicatos** en el proceso de enfriamiento del magma se representara simplificada en la **serie de Bowen**

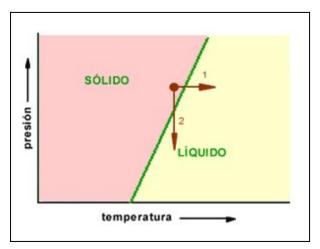
4.2. Ambientes magmáticos:

Un **magma es una masa de rocas fundidas de composición silicatada con cantidades variables de agua y diversos gases disueltos** en su interior por efecto de las grandes presiones. En esta masa fundida coexisten una cierta cantidad de minerales en estado sólido. La **solidificación** de un magma origina rocas magmáticas.

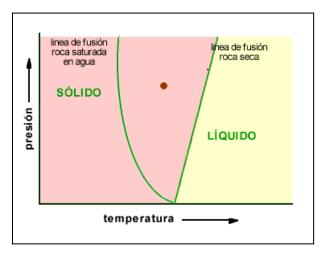
- Factores que determinan la formación de un magma:

1. Composición de las rocas: Como se muestra en la serie de Bowen, los minerales tienen diferentes puntos de fusión. Los minerales que consolidan a temperaturas mas frías son la **moscovita y el cuarzo.**

2. Aumento de la temperatura por:

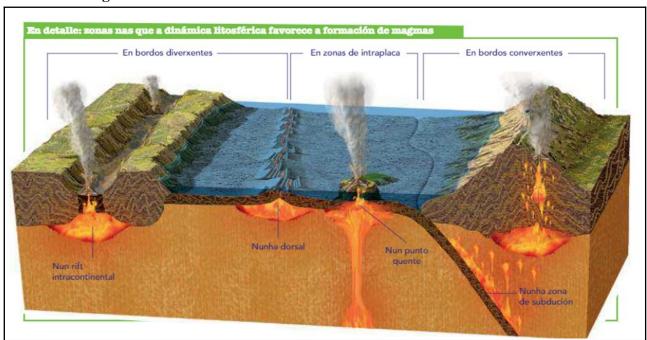

- Presencia de elementos radiactivos
- Fricción entre las placas
- Penachos térmicos o plumas térmicas en las que ascienden materiales fundidos desde la superficie del núcleo

3. Disminución de de la presión:


- Fracturas (Rifts de dorsales)

4. Presencia de fluidos: El agua en estas condiciones, alta presión y temperatura, interfieren con los minerales pudiendo desencadenar la rotura de la estructura cristalina.

Gráficas donde se muestra la influencia de la presión, temperatura y presencia de los fluidos en la formación de magmas



a) Si consideramos la presión y temperatura observamos que la fusión de los materiales sucede por un aumento de la temperatura (1) o disminución de la presión (2). Observa que la línea verde marca a transición entre el estado sólido y el fundido de los materiales. http://cienciasvirtual.com/apuntesbach/biogeo1bach/magmatismoymetamorfismo/imagenes/fusion.gif

2. Los cambios en composición, en concreto **la entrada de agua y volátiles** en la roca, pueden facilitar la fusión de los materiales ya que la línea de fusión se desplaza a temperaturas inferiores. En esta situación también se puede producir la fusión por un aumento en la presión.

Ambientes magmáticos:

Procesos de evolución o diferenciación de los magmas:

Durante la consolidación del magma, puede darse una serie de procesos que hacen variar la composición química de un magma, es decir, son aquellos procesos que dan lugar a la formación de magmas secundarios a partir de un magma original.

Esto sucede por:

1. Cristalización fraccionada y sedimentación de cristales:

La cristalización fraccionada se produce **porque no todo el magma solidifica a la misma temperatura.** Los minerales que tienen mayor punto de fusión son los primeros que cristalizan cuando el magma se enfría. Los minerales **ferromagnesianos (olivino y piroxeno)** son los **primeros en cristalizar,** y como son más densos que el magma remanente, se hunden y se van concentrando hacia abajo por la gravedad. El magma remanente queda empobrecido en Fe y Mg enriquecido en elementos más ligeros, como si, En la y K, y por tanto se vuelve más ácido.

Como consecuencia, a partir de un mismo magma, las rocas superiores serán más claras, menos densas y más ácidas que las que quedan debajo. La este proceso se le conoce como diferenciación magmática.

2. Asimilación magmática de las rocas encajantes.

La asimilación magmática se produce cuándo, en el ascenso hacia la superficie, un magma atraviesa **rocas de distinta composición** que pueden fundirse y pasar a formar parte del magma, modificando su composición original.

3. Mezcla de magmas

Los magmas también pueden variar su composición se se mezclan con otros magmas. Si la una cámara magmática, ocupada por un magma secundario, ya diferenciado, llega otro magma primario, se mezclan los dos y cambia su composición. No es frecuente que se mezclen magmas que no tengan un origen común.

Tipos de magmas:

En función del contenido de sílice se reconocen tres tipos de magmas primarios (formados a partir de la fusión de una roca sólida):

Magmas básicos o máficos

Bajo contenido en sílice (45-53%)

Contienen mucho hierro y magnesio

Se encuentran la altas temperaturas, son muy fluídos y tienen baja viscosidad, por lo que llegan a la superficie fácilmente.

Las rocas resultantes de su solidificación son oscuras, duras y densas (2900 y 3300 kg/m³)

El **gabro** y **el basalto** proceden de estos magmas.

Magmas ácidos ou félsicos

Elevado contenido en sílice (>65%)

Contienen mucho aluminio, sodio y potasio.

Se encuentran a temperaturas bajas (<800°C), son viscosos y fluyen lentamente, por lo que no alcanza a la superficie y quedan atrapados en el interior de la corteza.

Las rocas resultantes de su solidificación son claras y menos densas (2500 y 2700 kg/m³)

El **granito** y la riolita proceden de estos magmas.

Magmas intermedios

Características intermedias entre los anteriores

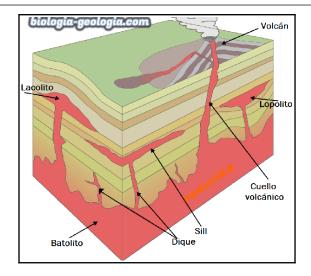
Contenido en sílice (53-65%)

Las rochas resultantes de su solidificación son de tonalidades variadas e densidades intermedias (2700 e 3000 kg/m³)

A diorita e a andesita proceden destes magmas.

Consolidación y emplazamiento de magmas

Atendiendo al lugar donde acontece esta solidificación o emplazamiento se distinguen dos grupos:


Actividade magmática intrusiva

Elenfriamiento y solidificación tiene lugar en el interior de la litosfera muy lentamente, propia de magmas viscosos. Estos magmas quedan en zonas superficiales formando masas de roca que se denominan genéricamente plutones.

Las dimensiones y forma de los plutones son muy variables, dependiendo de la composición del magma, de su volumen y de las características del lugar.

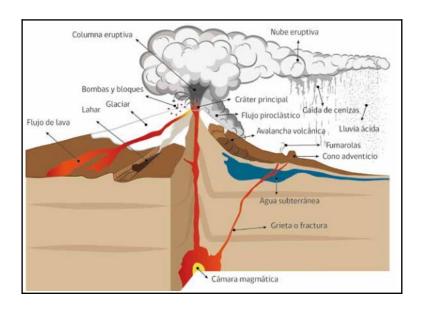
En función de la morfología que presentan y relación con la roca encajante reciben diferentes denominaciones:

- Formas concordantes como los lacólitos, lopolitos, y sills
- Formas discordantes: **Batólitos**, **diques y filones**. Los plutones son masas ovoidais o en forma de hongo que suelen a estar enraizadas en los batólitos.

Actividad magmática extrusiva

Se forman cuando el magma llega a la superficie, tanto en las áreas emergidas cómo nos océanos.

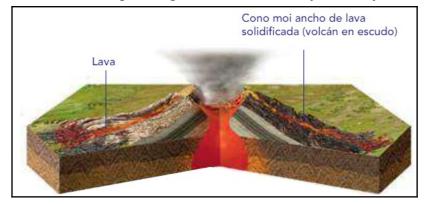
Los magmas salen de las cámaras magmáticas hacia la superficie a través de volcanes, enfriando y consolidándose rápidamente.

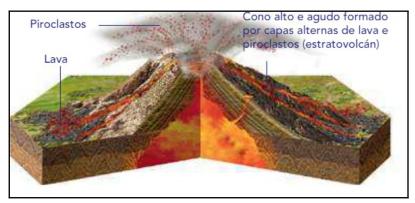

Las erupciones volcánicas, es decir, la salida de los gases y del magma hacia el exterior, se produce cuándo disminuye la presión en la cámara magmática y se liberan bruscamente los gases disueltos. Estos gases ardientes salen al exterior impulsando el magma, que ensancha las hendiduras y crea un conducto (chimenea volcánica), cuyo orificio exterior se llama cráter.

Se diferencian dos tipos de materiales volcánicos:

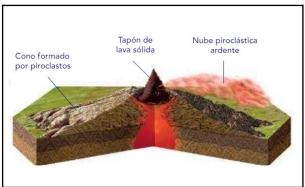
- La **lava** o masa líquida que resbala por el cono volcánico y enfría rápidamente formando vidrio o cristales microscópicos de minerales.
- Los **piroclastos**, trozos de lava lanzados al aire que solidifican antes de caer. En función de su tamaño creciente se distinguen: **cenizas (diámetro inferior a 2mm)**, **lapilli (entre 2 y 64 mm) y bombas (más 64 mm)**. Las Bombas salen en estado fundido y solidifican en el aire, adquiriendo un aspecto fusiforme. Los bloques son expulsados ya en estado sólido.

Después de las fases gaseosa y la lávica de una erupción, se vuelve a producir la desgasificación atenuada en forma de: fumarolas (nubes ardientes de gases), hervideros (a través de manantiales) o géiseres (surtidores de vapor de agua ferviente de carácter periódico).


Esquema sobre procesos volcánicos:

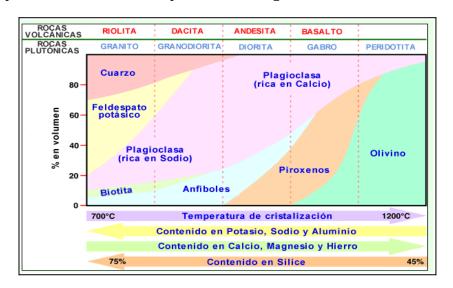

Tipos de actividad volcánica:

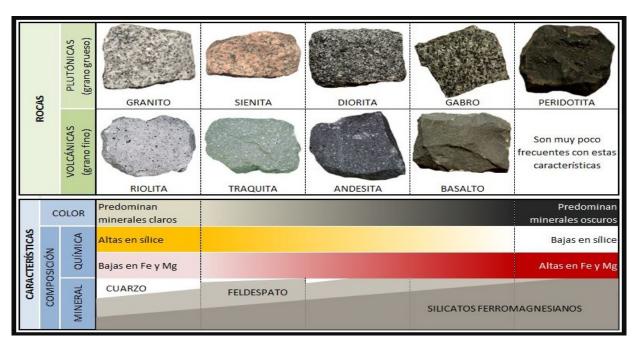
1. Tipo hawaiana: Caracterizado por magmas basálticos muy fluído y la temperaturas muy


elevadas.

2. Tipo estomboliana: se producen coladas de lava y expulsión de piroclastos. El edificio volcánico recibe el nombre de estratovolcán, y está formado por coladas de lava y acumulación de priroclastos.

3. Actividade plineana ou peleana: O magma ten unha baixa temperatura e é moi viscoso. A saída dos gases pode producir nubes piroclásticas ardentes.


- **4. Activiade fisural:** Semejante a la hawaiana pero la actividad se produce al largo de fisuras extendiéndose en áreas muy extensas.
- **5. Erupciones freáticas:** Se produce la infiltración de agua en la cámara magmática. Esto causa una gran explosión que desintegra el edificio volcánico y forma una cavidad llamada caldera de explosión.


Las rocas magmáticas:

En función de su contenido en sílice:

	%SiO ₂	
rocas ácidas	> 65	
rocas intermedias	65 - 55	
rocas básicas	55 - 45	
rocas ultrabásicas	< 45	

En la imagen aparecen clasificados los tipos de rocas magmática más frecuentes:

