RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO CUALQUIERA.

RAZONES DE ÁNGULOS COMPLEMENTARIOS, SUPLEMENTARIOS Y OPUESTOS.

- 1. Sabiendo que sen α = 0,2, con α un ángulo del 2º cuadrante, halla:
- a) $\cos \alpha$
- b) $tg\alpha$
- c) $\sec \alpha$
- d) $cosec\alpha$
- e) $cotg\alpha$

a)
$$sen^2 \alpha + cos^2 \alpha = 1$$

$$0.2^2 + \cos^2 \alpha = 1$$

$$\rightarrow \cos^2 \alpha = 1 - 0.04$$

a)
$$sen^2 \alpha + cos^2 \alpha = 1 \rightarrow 0.2^2 + cos^2 \alpha = 1 \rightarrow cos^2 \alpha = 1 - 0.04 \rightarrow cos \alpha = \sqrt{0.96} = -0.9798$$

b)
$$tg \alpha = \frac{sen \alpha}{const} = \frac{0.2}{0.0700} = -0.2041$$

b)
$$tg \alpha = \frac{sen \alpha}{\cos \alpha} = \frac{0.2}{-0.9798} = -0.2041$$
 c) $sec \alpha = \frac{1}{\cos \alpha} = \frac{1}{-0.9798} = -1.0206$

d)
$$\csc \alpha = \frac{1}{\sec \alpha} = \frac{1}{0.2} = 5$$

e)
$$\cot \alpha = \frac{1}{\tan \alpha} = \frac{1}{-0.2041} = -4.8996$$

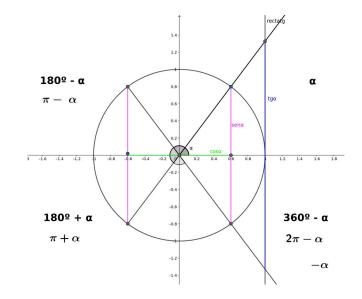
- 2. Halla todos los ángulos que cumplan:
- a) sen $a = \frac{1}{2}$

b) cos a =
$$\frac{-\sqrt{3}}{2}$$

c)
$$\cos a = -0.3$$

d) sen
$$a = -1$$

- f) cos a = -0,25 y ángulo del 4º cuadrante
- g) sen a = 1,2 y ángulo del 2º cuadrante
- i) tg a = 2 y ángulo del 3° cuadrante



- h) tg a = 3 v ángulo del 2º cuadrante
 - i) sen a = -0.8 y ángulo del 3º cuadrante
- hay dos ángulos que cumplen la igualdad: $\alpha = 30^{\circ}$ $\beta = 180^{\circ}$ a) sen $\alpha = \frac{1}{2}$ $30^{\circ} = 150^{\circ}$
- b) $\cos \alpha = \frac{-\sqrt{3}}{2}$ hay dos ángulos que cumplen la igualdad en el 2º y 3º cuadrante:

Hallamos primero el ángulo del primer cuadrante $\alpha = 30^{\circ} \rightarrow \beta = 180^{\circ} - 30^{\circ} =$ 150°

$$\gamma = 180^{\circ} + 30^{\circ} = 210^{\circ}$$

c) $\cos \alpha = -0.3$ hay dos ángulos que cumplen la igualdad en el 2º y 3º cuadrante:

Hallamos primero el ángulo del primer cuadrante con la calculadora:

$$\alpha = \cos^{-1} 0.3 = 72.542396876$$

$$\beta = 180^{\circ} - 72,542396876^{\circ} = 107,457603124^{\circ} = 107^{\circ} 27' 27,3"$$

$$\gamma = 180^{\circ} + 72,542396876^{\circ} = 252,542396876^{\circ} = 252^{\circ} 32' 32,6''$$

- d) sen $\alpha = -1$ $\alpha = 270^{\circ}$
- e) tg α = -1 hay dos ángulos que cumplen la igualdad en el 2° y 4° cuadrante:

Hallamos primero el ángulo del primer cuadrante $\alpha = 45^{\circ} \rightarrow \beta = 180^{\circ} - 45^{\circ} = 135^{\circ}$

$$\gamma = 360^{\circ} - 45^{\circ} = 315^{\circ}$$

- f) $\cos \alpha = -0.25$ y ángulo del 4° cuadrante No tiene solución
- g) sen α = 1,2 y ángulo del 2º cuadrante No tiene solución
- h) tg α = 3 y ángulo del 2º cuadrante No tiene solución
- i) tg α = 2 y ángulo del 3° cuadrante

Hallamos primero el ángulo del primer cuadrante con la calculadora:

$$\alpha = tg^{-1}2 = 63,434948823$$

El ángulo del 3° cuadrante: $y = 180^{\circ} + 63,434948823^{\circ} = 243,434948823^{\circ} = 243^{\circ} 26'$ 5,82"

j) sen α = -0,8 y ángulo del 3° cuadrante

Hallamos primero el ángulo del primer cuadrante con la calculadora $\alpha = 53,130102^{\circ}$

$$y = 180^{\circ} + 53{,}130102354^{\circ} = 233{,}130102354^{\circ} = 233^{\circ} 7' 48{,}37"$$

Página110 → 61, 66 y 68

61) Calcula las razones trigonométricas que faltan, sin calcular el ángulo al que corresponden. Cuadrante sen cos tg Segundo 0,670 Tercero -0,453Cuarto -0.745Tercero -0,782-1,902 Segundo Cuarto 0,698

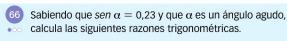
	$sen \alpha$	$cos \alpha$	$tan \alpha$
Cuadrante	$sen^2\alpha + cos^2\alpha = 1$		$tg \alpha = \frac{sen \alpha}{\cos \alpha}$
Segundo	0,670		
Tercero			
Cuarto	(*)-0,597	0,802	-0,745
Tercero	-0,782	$-\sqrt{1-(-0.782)^2} = -0.623$	$\frac{-0.782}{-0.623}$ =1,255
Segundo	(**)0,884	-0,465	-1,902
Cuarto	$-\sqrt{1-0.698^2}=-0.716$	0,698	$\frac{-0.716}{0.698} = -1.026$

(*)
$$\begin{cases} sen^{2}\alpha + \cos^{2}\alpha = 1 \\ tg\alpha = \frac{sen\alpha}{\cos\alpha} = -0.745 \end{cases} \rightarrow \begin{cases} sen^{2}\alpha + \cos^{2}\alpha = 1 \\ sen\alpha = -0.745\cos\alpha \end{cases} \rightarrow (-0.745\cos\alpha)^{2} + \cos^{2}\alpha = 1 \rightarrow (-0.745\cos\alpha)^{2} +$$

$$0,555\cos^2\alpha + \cos^2\alpha = 1 \rightarrow 1,555\cos^2\alpha = 1 \rightarrow \cos\alpha = 0,802 \rightarrow \sin\alpha = -0,597$$

(**)
$$\begin{cases} sen^{2}\alpha + \cos^{2}\alpha = 1 \\ tg\alpha = \frac{sen\alpha}{\cos\alpha} = -1,902 \end{cases} \rightarrow \begin{cases} sen^{2}\alpha + \cos^{2}\alpha = 1 \\ sen\alpha = -1,902\cos\alpha \end{cases} \rightarrow (-1,902\cos\alpha)^{2} + \cos^{2}\alpha = 1 \rightarrow (-1,902\cos\alpha)^{2} +$$

$$3,618\cos^2\alpha + \cos^2\alpha = 1 \rightarrow 4,618\cos^2\alpha = 1 \rightarrow \cos\alpha = -0,465 \rightarrow \sin\alpha = 0,884$$



b) $tg \alpha$ d) $sen (180^{\circ} + \alpha)$ f) $sen (720^{\circ} + \alpha)$

a) $\cos \alpha$ c) $\cos (180^{\circ} - \alpha)$ e) $tg(-\alpha)$

66.

a)
$$\cos \alpha = \sqrt{1 - \sin^2 \alpha} = \sqrt{1 - 0.23^2} = 0.97$$

a)
$$\cos \alpha = \sqrt{1 - \sec^2 \alpha} = \sqrt{1 - 0.23^2} = 0.97$$
 b) $tg \alpha = \frac{\sec n \alpha}{\cos \alpha} = \frac{0.23}{0.97} = 0.24$

c)
$$\cos(180^{\circ} - \alpha) = -\cos \alpha = -0.97$$

d)sen(180° +
$$\alpha$$
) = -sen α = -0,23

e) tg(-
$$\alpha$$
) = -tg α = -0,24

f)
$$sen(720^{\circ} + \alpha) = sen(360^{\circ} \cdot 2 + \alpha) = sen \alpha = 0.23$$

68 Utiliza la calculadora para calcular el ángulo lpha.

- a) $\cos \alpha = 0.4539$
- c) $tg \alpha = -2,1618$
- b) sen $\alpha = 0.9284$
- d) $\cos \alpha = -0.2926$
- a) El ángulo puede estar en el 1º o el 4º cuadrante: $\alpha = \cos^{-1}0,4539 = 63^{\circ}0'21''$

$$\beta = 360^{\circ} - 63^{\circ}0'21'' = 296^{\circ}59'39''$$

(calculadora en radianes)

 $\delta = 2\pi - \text{sen}^{-1}0,64 = 5,5886870$

 $tg \gamma = \frac{sen \gamma}{\cos \gamma} = \frac{-0.84}{-0.54} = 1.56$

 $tg \delta = \frac{sen \delta}{\cos \delta} = \frac{-0.64}{0.77} = -0.83$

 $\gamma = \pi + \cos^{-1}0.54 = \pi + 1$

b) El ángulo puede estar en el 1º o el 2º cuadrante: $\alpha = \text{sen}^{-1}0,9284 = 68^{\circ}11'12''$

$$\beta = 180^{\circ} - 68^{\circ}11'12'' = 111^{\circ}48'48''$$

c) El ángulo puede estar en el 2º o el 4º cuadrante:

$$\alpha = 180^{\circ} - tg^{-1}(2,1618) = 180^{\circ} - 65^{\circ}10'33'' = 114^{\circ}49'27''$$

$$\beta = 360^{\circ} - tg^{-1}(2,1618) = 360^{\circ} - 65^{\circ}10'33'' = 294^{\circ}49'27''$$

d) El ángulo puede estar en el 2º o el 3º cuadrante:

$$\alpha = 180^{\circ} - \cos^{-1}0,2926 = 107^{\circ}0'49''$$

$$\beta = 180^{\circ} + \cos^{-1}0,2926 = 252^{\circ}59'11''$$

+Página111 → 69, 70, 71, 73 y 74

69 Halla las razones trigonométricas de estos ángulos.

a)
$$\pi < \gamma < \frac{3\pi}{2}$$
, $\cos \gamma = -0.54$

b)
$$\frac{3\pi}{2} < \delta < 2\pi$$
, sen $\delta = -0.64$

a) $sen y = \sqrt{1 - \cos^2 y} = -\sqrt{1 - 0.54^2} = -0.84$

b)
$$\cos \delta = \sqrt{1 - \sin^2 \delta} = -\sqrt{1 - 0.64^2} = 0.77$$

De un ángulo de un triángulo se sabe que su seno vale 0,7. ¿Podrías determinar de qué ángulo se trata?

Es un ángulo agudo $\alpha = \text{sen}^{-1}0.7 = 44^{\circ}25'37''$

De un ángulo de un triángulo se conoce su coseno, que vale 0,2. ¿Podrías determinar qué ángulo es?

Es un ángulo agudo $\alpha = \cos^{-1}0.2 = 78^{\circ}27'47''$

73 De un ángulo α del 2.º cuadrante se sabe únicamente que su seno es 0,5. Determina las restantes razones trigonométricas de dicho ángulo.

 $sen(180^{\circ} - \alpha) = sen \alpha = 0.5 \rightarrow \alpha = 30^{\circ}$

El ángulo es $180^{\circ} - 30^{\circ} = 150^{\circ}$

 $sen150^{\circ} = 0.5 \rightarrow cos150^{\circ} = -\frac{\sqrt{3}}{2} \rightarrow tg150^{\circ} = -\frac{\sqrt{3}}{3}$

Sabiendo que la tangente de un ángulo es dos veces su seno y que ambas razones son negativas, halla sus razones trigonométricas.

$$tg \alpha = 2sen \alpha < 0 \rightarrow tg \alpha = \frac{sen \alpha}{cos \alpha} = 2sen \alpha - cos \alpha = \frac{sen \alpha}{2sen \alpha} = \frac{1}{2}$$

El seno y la tangente negativas corresponde a un ángulo del 4º cuadrante: 360º - 60º = 300º

3.- Sea α un ángulo del primer cuadrante, sin hallar el ángulo calcula:

h

a) Si tg α = 2 halla

$$tg(\pi/2 - \alpha)$$

$$tg(\pi - \alpha)$$

$$tg(\pi/2 + \alpha)$$

$$ta(\pi + \alpha)$$

$$tg(-\alpha)$$

 $tg(\pi - \alpha)$ $tg(\pi/2 + \alpha)$ $tg(\pi + \alpha)$ $tg(-\alpha)$ y $tg(3\pi/2 - \alpha)$.

b) Si sen α = 1/3 halla

$$sen(\pi/2 - \alpha)$$
, $sen(\pi - \alpha)$, $sen(\pi/2 + \alpha)$, $sen(\pi + \alpha)$, $sen(-\alpha)$, $sen(3\pi/2 - \alpha)$ y $sen(3\pi/2 + \alpha)$

c) Si cos α = 4/5 halla

 $\cos(\pi/2 - \alpha)$, $\cos(\pi - \alpha)$, $\cos(\pi/2 + \alpha)$, $\cos(\pi + \alpha)$, $\cos(-\alpha)$, $\cos(3\pi/2 - \alpha)$ y $\cos(3\pi/2 + \alpha)$.

a) tg(
$$\pi/2 - \alpha$$
) = cotg $\alpha = \frac{1}{2}$

$$tg(\pi - \alpha) = -tg \alpha = -2$$

$$tg(\pi/2 + \alpha) = -cotg(\alpha) = -1/2$$

$$tg(\pi + \alpha) = tg(\alpha) = 2$$

$$tq(-\alpha) = -tq(\alpha) = -2$$

$$tg(3\pi/2 - \alpha) = cotg \alpha = 1/2$$

b) sen(
$$\pi/2 - \alpha$$
) = cos $\alpha = \frac{\sqrt{8}}{3}$

$$sen(\pi - \alpha) = sen \alpha = 1/3$$

$$sen(\pi/2 + \alpha) = cos \alpha = \frac{\sqrt{8}}{3}$$

$$sen(\pi + \alpha) = -sen \alpha = -1/3$$

$$sen(-\alpha) = -sen \alpha = -1/3$$

$$sen(3\pi/2 - \alpha) = -\cos \alpha = -\frac{\sqrt{8}}{3}$$

$$sen(3\pi/2 + \alpha) = -\cos \alpha = -\frac{\sqrt{8}}{3}$$

c)
$$\cos(\pi/2 - \alpha) = \sin \alpha = 3/5$$

$$\cos(\pi - \alpha) = -\cos \alpha = -4/5$$

$$\cos(\pi/2 + \alpha) = -\sin \alpha = -3/5$$

$$\cos(\pi + \alpha) = -\cos \alpha = -4/5$$

$$cos(-\alpha) = cos \alpha = 4/5$$

$$cos(3\pi/2 - \alpha) = -sen \alpha = -3/5$$

$$cos(3\pi/2 + \alpha) = sen \alpha = 3/5$$

- 4. Sea α un ángulo del primer cuadrante tal que tg (p + α) = 0,75; sin hallar el ángulo α calcula:
- a) sen α , cos α y cotg α .
- b) tg($\pi/2 \alpha$), tg($\pi \alpha$) y tg($\pi/2 + \alpha$)
- c) sen(- α), cos(- α) y tg($3\pi/2 + \alpha$).

a) tg(
$$\pi$$
 + α) = tg α = 0,75

$$\rightarrow$$
 1+tg² $\alpha = \frac{1}{\alpha}$

a)
$$tg(\pi + \alpha) = tg \alpha = 0.75$$
 \rightarrow $1 + tg^2 \alpha = \frac{1}{\cos^2 \alpha}$ \rightarrow $\cos^2 \alpha = \frac{1}{1 + 0.75^2} = 0.64$

$$\cos \alpha = 0.8$$

$$sen \alpha = \sqrt{1 - 0.8^2} = 0.6$$
 $cotg \alpha = 4/3$

$$\cot \alpha = 4/3$$

b) tg(
$$\pi/2 - \alpha$$
) = cotg α = 1/tg α = 4/3

$$tg(\pi - \alpha) = -tg(\alpha) = -0.75$$

$$tg(\pi/2 + \alpha) = -\cot \alpha = -4/3$$

c) sen(-
$$\alpha$$
) = -sen α = -0,6

$$cos(-\alpha) = cos \alpha = 0.8$$

$$tg(3\pi/2 + \alpha) = -cotg \alpha = -4/3$$