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Una funcion es un infinitésino si Imy_4 F(x)=0
Dos infinitesimos son equiva\erﬁes en a si: llmx_)a;((—>;))=|
U;MPLOI'Im erld) | 22 x—0 fix)—0
=030, 53 3 Senx = X Senflx) = flx)
(k3% 3.3 Tol) =~ Tolfl) =
) 2 im0, X ||_m)O % glx) = x glflx)) = flx)
5 X
S -
a3 Im —=—=Im —== A 2
ST o0 W x4 cosx z% -cosf(x) z{T(X)
% .
: ; /a%y e -1~ X e -1 = fl
£ va N i)~ x Ll = £l
E e Oresenlx) = x  Oresenlflx) = flx)
Ea Oretglx) = x Oretylflx)) = f(x)




