MAT.APL. AS CCSS 2023/2024 | SOLUCION EXAME 2 (22AV) BLOQUE DE ANALISIS

4/03/2024
PREGUNTAS 1 2 3 4
PUNTUACION 2, 5 ptos 2,5 ptos 2,5 ptos 2,5 ptos

Observaciones: Se valorara el orden y la claridad en la ejecucidon del ejercicio. Todos los resultados
deben estar justificados y bien expresados matematicamente.

1. & precio en euros, que la accion de una empresa alcanza en el transcurso de una sesion de Bolsa, viene
dado por la funcién p (t) = 483 — 42t> + 120t + 200 0 <t < 7, t es el tiempo en horas a contar desde el
inicio de la sesion. Supongamos que la sesion empieza a las 10 de la mafana (t =0) y finaliza 7 horas
después (alas 5 de la tarde).

a) (1 pto) éEntre qué horas el precio de la accidn sube y entre qué horas baja? éA qué hora el precio de
la accion alcanza un valor mdximo relativo?¢ Y un valor minimo relativo? Calcula dichos valores .

b) (0,5 ptos) éSe alcanza en algin momento un valor mdximo absoluto?é Y un valor minimo absoluto?.
En caso afirmativo, calcula dichos valores.

¢) (1 pto) Estudia la curvatura y utilizando los resultados anteriores y calculando el punto de inflexion,
traza la grdfica de la funcion p(t) .
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2. a) ( 1 pto) Calcula la derivada de f(x) = In (1;%) , simplificando al mdximo el resultado
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3. Seaf(x) definida mediante la siguiente expresion [f(x)=41-x" si 0<x<3
|

5 x>3

Lx—
a) ( 1 pto) Estudia la continuidad en todo su domino, segun ios vaiores ae k

b) ( 1,5 ptos) Considerando k = 0, representa grdficamente el recinto delimitado por f(x), el eje de
abcisasy lasrectasx=-1y x=1. Obtén, ademds, el drea de dicho recinto .

a) La primera funcion es exponencial que es continua. La segunda es polindmica, también es
continua. La tercera es una fraccion cuyo denominador se anula en x =3 que no estd en su
dominio de definicion. La funcion es continua siloesenx =0yenx =3.

En x = 0 para ser continua deben cumplirse las cuatro condiciones:
e Existe f(0)=€"+k=1+k
e Existe lim f(x)=lime" +k=1+k
x50 x—r
e Existe lim f(x)=liml-x*=1-0=1
0" x=0"
e Los tres valores son iguales. 1+k=1=k=0

En x = 3 para ser continua deben cumplirse las cuatro condiciones:
e Existe f(3)=1-3"=-8
e Existe lim f(x)=liml-x*=1-9=-8
X3 13
e Existe lim f(x)=lim
x—3" f( ) -3 x=3 0
No se cumple la tercera condicion, por lo que no es continua en x = 3.

Conclusion:

Para k =0 la funcién es continua en R —{3}. Para & # 0 la funcion es continua en R —{0,3}.
b) Para k =0 la funcion queda

e si x=0
f(x)={1-x* si 0<x<3

1

x=-3

Busquemos los posibles puntos de corte de la grafica de la funcién con el eje de abscisas en el
intervalo (-1, 1).

En(-1,0)
f(x)=€
y=0
En(0,1)
f(x)=1-x7
y=0

Estos puntos no pertenecen a nuestro intervalo (-1, I).

si x>3

} = ¢ =0 = No tiene solucion

}Dl—x:=0:>x:=1:>x=\ﬁ=il

Como no hay puntos de corte el area de este recinto solo es una integral definida de la funcién
desde —1 a 1. Aunque debemos separarlo en dos integrales al cambiar de definicion.
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El 4rea es la suma del valor de las integrales calculadas:
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4. a) (1,5 ptos) Calcula las asintotas de f(x) = p
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, representando grdficamente los resultados.
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b) ( 1 pto) Calcula la ecuacion de la recta tangente a la funcion :
. ! -15
del apartado anterior en el punto de abcisa x =-2. | P
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