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TEMA 11. La integral definida 

Problemas Resueltos 
 

Integrales definidas 

 

1. Halla el valor de:  

a) ( )
 3

2

 2

2x dx
−

+    b) 
 7

 0

4

5 1
dx

x +    c) dxxx +
3

0

21   d)  +−
1 

0 

13 2

dxxe x  

Solución: 

Para hallar una primitiva de cada función hay que ajustar constantes. 

 

a) ( )
 3

2

 2

2x dx
−

+  = 

3
3

2

8 65
2 9 6 4

3 3 3

x
x

−

   
+ = + − − − =   

  
 . 

 

b) ( )
7 7  7

 0  0 0

4 8 5 8 8
5 1 6 1 8

5 5 55 1 2 5 1
dx dx x

x x

 
= = + = − = 

+ +    . 

 

c) dxxx +
3

0

21  = ( )
( )

( ) ( )

3
3/2

23
1/2 3/2

2 2

0

0

11 1 1 1 7
2 1 · 1 8 1

2 2 3 / 2 3 3 3

x
x x dx x

+
+ = = + = − = . 

 

d)  +−
1 

0 

13 2

dxxe x  = ( ) ( )eeedxxe xx −−=






−=−− −+−+− 2

1

0

13
1 

0 

13

6

1

6

1
6

6

1 22

. 

  

2. Calcula la integral 
 

2

 1

ln( )
e

x dx . 

Solución: 

Aplicando una de las propiedades de los logaritmos  
 

2

 1

ln( )
e

x dx  = 
 

 1

2 ln( )
e

x dx . 

Una primitiva de esa función puede calcularse por el método de partes. 

Tomando: u = ln x   dx
x

du
1

= ;  dv = dx    v = x. 

Luego: 

( )2 ln 2 ln 2 lnxdx x x dx x x x
 

= − = − 
   . 

 

Por tanto: 

   
1

 1

2ln 2 ln 2 ln (1ln1 1) 2
e

e
xdx x x x e e e= − = − − − = . 
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3. Utilizando el cambio de variable xt ln=  calcula 

2 

 

3

(4 ln )

e

e

dx
x x+ . 

Solución: 

Si xt ln=   dx
x

dt
1

= . 

Además: si x = e, 1ln == et ; y si x = e2, 2ln 2 == et . 

 

Por tanto,  
2 

 

3

(4 ln )

e

e

dx
x x+  = 

2 

 

3 1
·

(4 ln )

e

e

dx
x x+  = 

 2

 1

3

4
dt

t+  =  

= ( ) ( )
2

1

6
3 ln(4 ) 3 ln 6 ln5 3ln

5
t+ = − = . 

 

4. Calcula las siguientes integrales definidas: 

a) 
1

0

arcsin  x dx       b)  ( )
1

2

0

ln 1x x dx+ −   

Solución: 

En ambos casos, una primitiva de las funciones dadas se obtiene por el método de partes. 

 

a) Para arcsin  x dx  se hace: 

arcsinu x=  y dv dx=   dx
x

du
21

1

−
= ; v = x. 

Luego, 

2

2
arcsin arcsin arcsin 1

1

x
xdx x x dx x x x

x
= − = + −

−  . 

 

Por tanto, 

 
1

0

arcsin  x dx  = 
 1

2

 0

arcsen 1 1
2

x x x
 + − = −

 
. 

 

b) Para calcular ( )2ln 1x x dx+ −  se toma: 

( )2ln 1u x x= + −  y dv dx=   
2 2 2

1 2 1
· 1

1 2 1 1

x
du dx dx

x x x x

  −
= − = 

+ − + + 
; v = x. 

Luego 

( )2ln 1x x dx+ −  = ( ) ( )2 2 2

2
ln 1 ln 1 1

1

x
x x x dx x x x x

x
+ − + = + − + +

+ . 

 

Por tanto 

( )
1

2

0

ln 1x x dx+ −  = ( )( )
1

2 2

0

ln 1 1 ln( 2 1) 2 1x x x x+ − + + = − + − . 
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5. (Propuesto en Selectividad, Madrid) Calcula razonadamente las siguientes integrales

definidas: 

a) 
  

2

  0

cos  xe x dx


       b) dx
x

x
 

cos1

2sin2/  

0  
2



+
 

Solución: 

a) La integral dxxe x  cos 2  hay que hacerla por partes. 

Haciendo xeu 2= y dvxdx =cos , se tiene: dxedu x22= ; v = sin x   

 dxxe x  cos 2 = dxxexe xx  sin2 sin 22 − . 

 

La segunda integral, dxxe x  sin2 2 , también debe hacerse por el método de partes. 

Tomando:  xeu 22=  y dvxdx =sin   dxedu x24=  y vx =− cos   

 

Luego,  

dxxe x  cos 2 = 





 +−−  dxxexexe xxx  cos4 cos2sin 222   

 dxxe x  cos 5 2  = xexe xx cos2sin 22 +    

 dxxe x  sin2 2  = ( )xexe xx cos2sin
5

1 22 + . 

 

Por tanto, 

 dxxe x  cos  
  

0  

2


 = ( )








+

0

22 cos2sin
5

1
xexe xx  =  

 = ( ) ( ) 0cos20sincos2sin
5

1 0022 eeee +−+   = ( )xe222
5

1
−− . 

 

b) dx
x

x
 

cos1

2sin2/  

0  
2



+
 

Haciendo el cambio tx =2cos   ( ) dtdxxx =− sincos2   dtxdxx −=cossin2 . 

Como xxx cossin22sin = , la integral inicial queda: 

 ( )xtdt
t

dx
x

xx
dx

x

x 2

22
cos1lnln

1

1

cos1

cossin2

cos1

2sin
+−=−=

+

−
=

+
=

+  . 

 

Por tanto, 

( )( )
2/

0

2
2/  

0  
2

cos1ln 
cos1

2sin 

+−=
+ xdx

x

x
 =  

= ( ) ( )( ) 2ln2ln1ln0cos1ln)2/(cos1ln 22 =+−=+−−+− . 
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Cálculo de áreas de recintos planos

 

6. Calcula el área de la región limitada por 
x

y
4

= , el eje OX y las rectas x = 1, x = 4.  

Solución: 

La función 
x

y
4

= , que es una hipérbola equilátera, puede trazarse 

dando algunos puntos: (0,5, 8); (1, 4); (2, 2); (4, 1); (8, 0,5). 

 

La región es la sombreada en la gráfica adjunta. 

 

El área viene dada por la integral definida: 

   4ln4ln4
4 4

1

4 

1  

== xdx
x

 unidades cuadradas (u2). 

 

7. Halla la superficie del recinto plano encerrado entre la curva dada por la función 
xxexf =)(  y el eje OX, en el intervalo [–2, 0].  

Solución: 

En el intervalo considerado, el signo de la función es negativo, por tanto, la superficie 

buscada viene dada por: 

 −−=
0 

2 

  dxxeS x .  

Aunque la gráfica no es imprescindible, es bueno hacerla; al menos, esbozarla. 

También podría decirse que 
 0

 2

  xS xe dx
−

=  . 

La integral xxe dx  se hace por partes. 

Tomando:  

 u = x y dxedv x=    dxdu = ; xev = . 

Se tiene:  

 xxe dx  = − dxexe xx = xx exe − . 

Luego:  

 −−=
0 

2 

  dxxeS x =   20

2 31 −
− −=−− eexe xx  u2. 

 

8. Calcula el área encerrada entre la curva de la función 
x

x
xf

+
=

2
)(

2

 
y el eje OX, en el 

intervalo [0, 2].  

Solución: 

Como en el intervalo de integración la función es positiva, el área pedida es: 

 

2
2 2 2  2

 0  0
0

4
2 2 4ln(2 )

2 2 2

x x
A dx x dx x x

x x

  
= = − + = − + +   

+ +     = 

  = 2 4ln 4 4ln 2 4ln 2 2− + − = −  u2. 
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9. Halla el área de la región plana limitada por la curva xy 2sin= y el eje OX en el intervalo

[0, ]. 

Solución: 

La función xy 2sin=  es periódica de periodo .  

Corta al eje OX en los puntos x = 0, x = /2 y x = . 

Su gráfica se puede trazar a partir de la de la función seno. 

El área pedida es la sombreada en la figura adjunta. 

 

Luego:  

 


=
2/ 

0 

2sin  2 xdxS  22cos
2

1
2

2/

0

=






−=



x  u2. 

 

10. Halla el área de la región plana limitada por la curva ( ) xxy cossin
2

=  y el eje OX en el 

intervalo [0, /2]. 

Solución: 

Como la función es positiva en el intervalo de estudio, la superficie buscada es:  

 ( )


=
2/ 

0 

2
cossin  xdxxS  ( )

3

1
0sin

2
sin

3

1
sin

3

1
2/

0

3
=







 −


==



x  u2. 

 

11. Halla el área encerrada entre la curva 
x

y
1

=  y el eje OX, entre x = 1 y x = e2. 

Solución: 

El recinto es el sombreado de la figura adjunta.  

(No es necesario dibujarlo, pues la función es positiva en el 

intervalo de integración). 

 

El área es: 

 
  21lnlnln

1 2

1

 

1 

2
2

=−== exdx
x

e
e

 u2. 

 

12. Calcula el área de la región limitada por la función 
x

y
4

=  y la recta que pasa por los 

puntos (1, 4) y (4, 1).  

Solución: 

La recta que pasa por los puntos (1, 4) y (4, 1) de la curva tiene por 

ecuación: 

 
41

4

14

1

−
−

=
−
− yx

  5+−= xy . 

 

El recinto es el sombreado en la figura adjunta.  

 

El área de esa región viene dada por la integral definida: 

 4ln4
2

15
ln4

2
5

4
5

4

1

24 

1  

−=







−−=







 −− x
x

xdx
x

x  u2. 



Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 11  222 

www.matematicasjmmm.com José María Martínez Mediano

13. Calcula el área comprendida entre las parábolas 12 ++= xxy  e xxy 22 −−= . 

Solución: 

El área es la del recinto sombreado en la figura adjunta. (Como las gráficas son parábolas 

pueden trazarse fácilmente, dando algunos valores). 

Las curvas se cortan en x = –1 y en x = –1/2, que son las soluciones de 

la ecuación: xxxx 21 22 −−=++   22 3 1 0x x+ + = . 

Luego: 

 
 1/2  1/2

2 2 2

 1  1

( 2 ( 1)) ( 2 3 1)S x x x x dx x x dx
− −

− −

= − − − + + = − − −  = 

  = 
24

1

2

3

3

2
2/1

1

23 =






 −−−
−

−

xxx  u2. 

 

14. Halla el área del recinto plano comprendido entre las gráficas 2xy =  e xy = . 

Solución: 

El recinto plano comprendido entre las gráficas 2xy =  e xy = , que 

puede trazarse dando algunos valores, es el adjunto. 

Los puntos de corte se obtienen resolviendo la ecuación 2x x= , cuyas 

soluciones son x = 0 y x = 1. La curva que va por encima es xy = . 

Luego: 

 ( )
3

1

3

1

3

2

33

2
1

0

32/31 

0 

2 =−=







−=−= 

xx
dxxxS  u2. 

 

15. Calcula el valor de a para el que las tangentes a la curva 2y x a= +  en los puntos de 

abscisa de valor absoluto 1, pasan por el origen de coordenadas. Halla el área del recinto 

limitado por la curva y las dos tangentes. 

Solución: 

La tangente a ( )y f x=  en el punto de abscisa x0 es ( )0 0 0( ) (́ )·y f x f x x x− = − . 

En nuestro este caso, como (́ ) 2f x x= , se tiene: 

• En x = 1: ( ) ( )1 2· 1y a x− + = −    2 1y x a= − + . 

Como debe pasar por (0, 0)  0 = –1 + a  a = 1.  

La tangente es: 2y x= . 

  

• En x = –1: ( ) ( )1 2· 1y a x− + = − +    2 1y x a= − − + . 

Por pasar por (0, 0)  0 = –1 + a  a = 1.  

La tangente es: 2y x= − . 

 

El recinto limitado por la curva y las dos tangentes es el sombreado en 

la figura adjunta. 

El área pedida vale:  

  A = 
1

2

0

2 ( 1) Tx dx A
 

+ − 
  = 

3

2

2

2·1
·2

3
2

1

0

3

=−







+ x

x
 u2, 

AT  es un triángulo de base 1 y altura 2. 
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16. Calcula el área encerrada entre las curvas dadas por las funciones 2)( xxf =  y 

xxxxg 22)( 23 +−= . 

Solución: 

Para determinar el área interesa conocer los puntos de corte de las curvas y saber qué curva va 

por encima de la otra entre esos puntos de corte. También es conveniente hacer un esquema 

gráfico de la situación.  

Puntos de corte: 

 )()( xgxf =   xxxx 22 232 +−=   023 23 =+− xxx    

  0)23( 2 =+− xxx   0)2)(1( =−− xxx . 

Las curvas se cortan cuando x = 0, x = 1 y x = 2. 

 

Posición de las curvas en los intervalos (0, 1) y (1, 2).  

Se hace la diferencia )()( xfxg − , que es )2)1()()( −−=− xxxxfxg . 

Luego: 

• Si 0 < x < 1, 0))·()·(()2)1()()( −−+=−−=− xxxxfxg  → )(xg va por encima de )(xf  

• Si 1 < x < 2, 0))·()·(()2)1()()( −++=−−=− xxxxfxg  → )(xg va por debajo de )(xf  

 

Por tanto, el área pedida viene dada por 

( ) ( ) −+−=
2 

1 

1 

0 

)()()()( dxxgxfdxxfxgS   

 ( ) ( ) −+−++−=
2 

1 

23
1 

0 

23 2323 dxxxxdxxxxS  =  

= 
2

1

4

1

4

1

44

2

1

23
4

1

0

23
4

=+=







−+−+








+− xx

x
xx

x
 u2. 

 

El esquema gráfico, que puede obtenerse calculando y 

representando algunos puntos de las curvas, es el adjunto. 

 

17. Calcula el área de la región acotada del plano limitada por la curva 3 23 3y x x x= − +  y la 

recta y x= . 

Solución: 

La curva 3 23 3y x x x= − +  y la recta y x=  se cortan cuando x = 0, x = 1 y x = 2, que son las 

soluciones de ( )3 2 23 3 3 2 0x x x x x x x− + =  − + = . 

La región acotada por ellas es la sombreada en la figura adjunta. 

El área pedida es  

 A = A1 + A2 = ( ) ( )
 1  2

3 2 3 2

 0  1

3 2 3 2x x x dx x x x dx− + + − + −   = 

 = 

1

0

23
4

4 







+− xx

x
+

2

1

23
4

4 







−+− xx

x
=  

 = 
1 1

1 1 4 8 4 1 1
4 4

   − + + − + − + − +   
   

 = 
2

1
 u2.       
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18. Halla el área del recinto limitado por las curvas de ecuación 2xy =  e xy = .  

Solución: 

Las curvas se cortan cuando 2x x= .  

Sus soluciones son x = 0, x = –1 y x = 1. 

Las curvas son las adjuntas; pueden representarse dando valores:  

(–1, –1); (0, 0); (1, 1).  

Por tanto: 

 
3

1

3

2
)(2

1

0

32
1

0

2 =






 −=−=  xxdxxxS  u2. 

 

19. De la función dcxbxaxxf +++= 23)(  se sabe que tiene un máximo relativo en x = 1, 

un punto de inflexión en (0, 0) y que 
1

0

5
 ( )

4
f x dx = . Calcula a, b, c y d.  

Solución: 

 dcxbxaxxf +++= 23)(   →  pasa por (0, 0)  f (0) = 0 = d. 

 cbxaxxf ++= 23)´( 2   →  máximo en x = 1  f ´(1) = 0  023 =++ cba  (*) 

 baxxf 26)´´( +=   →  inflexión en (0, 0)  f ´´(0) = 0  2b = 0  b = 0 

 

Luego, la función es:  

 cxaxxf += 3)(  con 03 =+ ca (*)  c = –3a … 3( ) 3f x ax ax= − . 

 

Como  

 
1

0

5
 ( )

4
f x dx =   

1
3

0

5
 ( 3 )

4
ax ax dx− =   

4

5

2

3

4

1

0

24

=







−

axax
  

4

5

2

3

4
=−

aa
   

  a = –1 y c = 3 

 

La función es: xxxf 3)( 3 +−= . 

 

20. (Propuesto en Selectividad) Calcula el área determinada por las curvas de ecuaciones 
22y x=  e 4 22y x x= − , representadas en el dibujo adjunto. 

Solución: 

Los puntos de corte de las gráficas se obtienen resolviendo el sistema: 

 




=

−=
2

24

2

2

xy

xxy
   04 24 =− xx   x = –2, x = 0, x = 2. 

La curva que va por encima, en el intervalo [–2, 2], es 22y x= .   

Por esto, y por la simetría de ambas curvas: 

 ( )
 2

2 4 2

 0

2 2 2S x x x dx= − + = ( )
 2

2 4

 0

2 4x x dx−  = 

 =  

2
5

3

0

4 32 32
2 2

3 5 3 5

x
x

   − = −   
  

 = 
128

15
 u2. 
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21. Calcula el área del recinto plano limitado por la parábola 12 =− xy  y por la recta 

1y x= − . 

Solución: 

El recinto es el sombreado en la figura adjunta. Puede dibujarse dando algunos puntos: 

Para la parábola: (–1, 0); (0, –1) y (0, 1); (3, –2 y (3, 2). 

Para la recta: (0, –1) y (3, 2) 

El corte de la recta con la parábola se produce cuando  

 11 −=+ xx   x = 0, x = 3. 

 

El área será:  

 
 0  3

 1  0

2 1 ( 1 1)S x dx x x dx
−

= + + + − +  =  

 = 

30 2
3/2 3/2

1 0

4 2 4 16 9 2
( 1) ( 1) 3

3 3 2 3 3 2 3

x
x x x

−

 
+ + + − + = + − + − 

 
 = 

9

2
 u2.  

 

22. Calcula el área encerrada entre la gráfica de la función exponencial xexf =)(  y la cuerda 

a la misma que une los puntos de abscisas x = −1 y x = 1.  

Solución: 

Los puntos de la gráfica son: P = (−1, e−1) y Q = (1, e). 

En la figura se dibuja la curva y la cuerda. 

 

El área encerrada entre la curva y la cuerda es la de la parte 

sombreada en la figura. Su valor es la diferencia del área del 

trapecio y la que queda entre la curva y el eje OX. 

El área del trapecio es:
( )1

1
·2

2
TRAP

e e
A e e

−

−
+

= = + . 

El área entre la curva y el eje OX es:  

 A = 
1

1
1

1
1

x xe dx e e e−

−
−

= = −  

Por tanto, el área de la región sombreada es: ( )1 1 12e e e e e− − −+ − − =  u2. 

 

23. Halla el área de la región limitada por las curvas siny x=  e xy cos=  y las rectas x = /4 

y x = 5/4. 

Solución: 

La región es la sombreada en la figura adjunta. 

 

En el intervalo [/4, 5/4] la curva del seno va por encima 

de la del coseno. Por tanto, el área pedida viene dada por 

la integral definida 

( )  
5 /4

5 /4

/4
/4

sin cos cos sinx x dx x x







− = − −  = 

= 
5 5

cos sin cos sin
4 4 4 4

   
− − + +  = 

2 2 2 2
2 2

2 2 2 2
+ + + =  u2. 
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24. Dibuja el recinto finito del plano limitado por la recta x = 1, la parábola 2xy =  y la 

hipérbola 
x

y
8

= . Calcula su área. 

Solución: 

Las gráficas se trazan fácilmente dando valores. 

Algunos puntos: 

Parábola 2xy = : (0, 0); (1, 1), (2, 4). 

Hipérbola 
x

y
8

= : (1, 8); (2, 4); (4, 2); (8, 1). 

 

Puntos de corte de la recta x = 1 con las curvas: 

(1, 1) con la parábola; (1, 8) con la hipérbola 

 

Corte entre las curvas: 





=

=

xy

xy

/8

2

   
x

x
82 =   83 =x   x = 2. 

 

El recinto es el sombreado en la figura anterior. Su área viene dada por: 

 A = 
 2

2

 1

8
x dx

x

 − 
   = 

2

1

3

3
ln8 








−

x
x  = 

8 1 7
8ln 2 0 8ln 2

3 3 3

 − − − = − 
 

 u2. 

 

25. (Propuesto en Selectividad, Extremadura)  

a) Calcula los puntos de corte de la recta 32 =− xy  y de la recta 1=y  con la rama 

hiperbólica 2=xy , x > 0.  

b) Dibuja el recinto plano limitado por las tres curvas del apartado anterior.  

c) Calcula el área de dicho recinto.  

Solución: 

a) Los puntos de corte de la curva con cada una de las rectas se obtienen resolviendo los 

sistemas: 





=

=−

1

32

y

xy
 → (–1, 1); 





=

=−

2

32

xy

xy
 → (1, 2);  





=

=

1

2

y

xy
 → (2, 1).  

 

b) Su gráfica es la adjunta. Para representar cada curva 

basta con dar algunos valores. 

 

c) El recinto sombreado puede descomponerse en dos partes: el triángulo rectángulo de la

izquierda, cuya área vale 1 u2; y el “triángulo” curvo de la derecha, cuya área se calcula por la

integral definida  

 dx
x

  
  

   






 −
2

1

1
2

 =   ( ) 12ln211ln222ln2ln2
2

1 −=−−−=− xx  u2. 

Por tanto, el área total del recinto vale 2ln2  u2. 
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26. Halla el área del recinto limitado por las curvas 2+= xey , xey −=  y 

la recta x = 0.  

Solución: 

El recinto pedido es el sombreado en la figura adjunta. 

 

Corte de las curvas: 

 xx ee −+ =2   x = –1. 

 

El área viene dada por:  

 ( ) ( )
0 0

2 2 2 0 1 1 2

11

2 1x x x xe e dx e e e e e e e e+ − + −

−−

− = + = + − − = − + . 

 

27. (Propuesto en Selectividad, Navarra)  

Dadas las funciones 25)( xxf −=  y 
2

4
)(

x
xg = , calcula el área de la región del plano 

encerrada entre las gráficas de )(xf  y )(xg . 

Solución: 

Ambas gráficas pueden dibujarse dando algunos pares de valores. 

Se cortan en la solución del sistema: 

 




=

−=
2

2

/4

5

xy

xy
  

2

2 4
5

x
x =−   045 24 =+− xx    

 




=
−

=
4

1

2

162552x   x = ±1; ±2. 

Los puntos de corte son: 

(–2, 1); (–1, 4); (1, 4); (2, 1) 

 

La región es la sombreada en la figura adjunta. Su área 

viene dada por: 

 dx
x

x dx
x

x dx
x

xA
  

  

  

  

  

   






 −−=






 −−+






 −−=
−

−

2

1
2

2
2

1
2

2
1

2
2

2 4
52

4
5

4
5 =   

= 
3

4

3

7
324

3

1
52

3

8
102

4

3
52

2

1

3

=






 −=















+−−








+−=








+−

x

x
x  u2. 
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Teorema fundamental del cálculo integral

 

28. Aplicando el teorema fundamental del cálculo, halla los valores de las constantes a, b, c y 

d, sabiendo que: 

 ( ) ( )
 

3 3 2

 0

1
x

t xt t e dt ax bx cx d e− + = + + +  

Solución: 

El teorema fundamental del cálculo integral dice:  

Si )(xf  es una función continua en [a, b] y )(xF  se define como =
x

a

dttfxF )()( , entonces 

)(xF  es derivable en [a, b] y su derivada es )()´( xfxF = . 

 

Por tanto, si ( ) ( )
 

3 3 2

 0

1
x

t xt t e dt ax bx cx d e− + = + + +   ( )3 2( ) xF x ax bx cx d e= + + +  es 

una primitiva de ( )3( ) 1 xf x x x e= − + . 

Esto es: ( )3 2(́ ) ´xF x ax bx cx d e = + + +   = xexx )1( 3 +− . 

Luego:  

 ( ) ( )2 3 23 2 x xax bx c e ax bx cx d e+ + + + + +  = xexx )1( 3 +−   

  ( )3 2(3 ) (2 ) ( ) xax a b x b c x c d e+ + + + + +  = xexx )1( 3 +− . 

Identificando coeficientes se obtiene: a = 1; b = –3; c = 5; d = –4. 

 

29. (Propuesto en Selectividad)  

Halla los puntos donde se anula la derivada de la función 
2

 2
( 10 24)

 0

( ) 2
x

t tf x x e dt− += − +  . 

Solución: 

Sea 
2

 2
( 10 24)

 0

( )
x

t tg x e dt− +=  . 

Por el teorema fundamental del cálculo integral se tiene: 

 
2

 2
2( 10 24)

0
 0

( ) ( ) (2 ) (0)
x

xt tg x e dt G t G x G− += = = −  → ( ) (2 ) (0)g x G x G= − , 

siendo 24102

)´( +−= ttetG . 

Derivando: 

( ) (2 ) (0)g x G x G= −   ( )
24 20 24(́ ) (2 ) (0) ´ (́2 )·2 2 x xg x G x G G x e − += − = = . 

 

Con esto, como )(2)( xgxxf +−= , se tendrá: 

 )´(2)´( xgxf +−= = 24204 2

22 +−+− xxe .  

 

Si (́ ) 0f x = , entonces:  
24 20 242 2 0x xe − +− + =   24204 2

22 +−= xxe   24 20 24 0x x− + =   x = 2; x = 3 
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30. Si  f es una función continua en el intervalo [−2, 2] tal que 
1 2

2 1

( ) ( )f t dt f t dt
−

−

=  , ¿se 

puede asegurar que existen dos números, b y c pertenecientes a [−2, 2], tales que b  −1, c  1 

y )()( cfbf = ?  

Solución: 

Por el teorema del valor medio del cálculo integral, se sabe que si 

( )f x  es continua en el intervalo [a, b], entonces existe un punto  

x0  [a, b] tal que 
2

1

 

2 1 0
 

( ) ( )· ( )
x

x

f x dx x x f x= −  

 

Aplicando este teorema en el intervalo [−2, −1], puede asegurase que existe b  [−2, −1], esto 

es, −2 < b < −1, que verifica ( )
1

2

( ) 1 ( 2) · ( ) ( )f t dt f b f b
−

−

= − − − =  

 

Análogamente, para el intervalo [1, 2], existe c, con 1 < c < 2, tal que.   

)()()12()(
2

1

cfcfdttf =−=  

 

En consecuencia, como  =
−

−

2

1

1

2

)()( dttfdttf , puede asegurarse que existen dos números b y c, 

pertenecientes a [−2, 2], tales que b  −1, c  1 y )()( cfbf = . 

 

31. (Propuesto en Selectividad, Madrid)  

Sea la función 

2

2

0

( )
x

tF x e dt−=  . 

a) Calcula (́ )F x , estudia el crecimiento de ( )F x  y halla sus máximos y mínimos. 

b) Calcula ´́ ( )F x  y estudia la concavidad y convexidad de ( )F x . Esboza la gráfica con los 

datos obtenidos. 

Solución: 

Por el teorema fundamental del cálculo integral, 

 

2

2

0

( )
x

tF x e dt−=   = )0()()( 2

0

2

GxGtG
x

−= , siendo 
2

)´( tetG −= . 

 

a) Derivando 2( ) ( ) (0)F x G x G= − , se deduce: 

 2(́ ) (́ )·2F x G x x=   xexF x 2·)´(
4−=  → Esta derivada se anula en x = 0. 

 

Para x > 0, F´ > 0  F será creciente. (Para x < 0 debe suponerse que la función no está 

definida; o, al menos, que no se sabe nada). 

Luego, en x = 0 la función ( )F x  tiene un mínimo, que será absoluto. 

 

b) 
4 44´́ ( ) 2 8x xF x e x e− −= − = )41(2 44

xe x −−   ´́ ( ) 0F x =  en 
2

1
=x , que es un punto de 

inflexión.
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(La solución 
2

1
−=x   cae fuera del dominio). 

Si 
1

0
2

x  ,  F´´ > 0, luego F es convexa (). 

Si 
2

1
x , F´´<0, luego F es cóncava ().  

Con esto, la gráfica de F puede ser la adjunta.  

 

32. (Propuesto en Selectividad, Madrid) Sea f una función real de variable real, continua y 

positiva, tal que 
0

( ) arctg
x

xf t dt e x a= + + . 

Determina el valor de la constante a y halla ( )f x  aplicando el Teorema Fundamental del 

Cálculo. 

Solución: 

Sea  
0

( ) ( ) arctg
x

xF x f t dt e x a= = + + .   

En consecuencia, 
0

0

0

(0) ( ) arctg0 0F f t dt e a= = + + =   1 + a = 0  a = –1. 

 

Como ( )F t es una primitiva de ( )f t , se tendrá que: 

 )()´( xfxF =   
2

1
( )

1

xf x e
x

= +
+

. 

 

33. (Propuesto en Selectividad, La Rioja)  

Sea la función 
1

sin
( )

x t
F x dt

t
=  , definida para x  1.  

Halla sus máximos y mínimos relativos. 

Solución: 

Por el teorema fundamental del cálculo integral se tiene que si  

=
x

a

dttfxF )()( , entonces )()´( xfxF =  

Por tanto, en este caso, 
sin

(́ )
x

F x
x

= . 

 

Los máximos y mínimos se dan en las soluciones de 0)´( =xF  que hacen negativa o positiva 

a )´´(xF , respectivamente. 

sin
(́ ) 0

x
F x

x
= =   x = k, k = 1, 2, 3… 

 

Derivada segunda: 
2

(cos )· sin
´́ ( )

x x x
F x

x

−
= . 

 

Signo de la derivada segunda en los puntos x = k,  k = 1, 2, 3… 
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• Si k es par: x = 2, 4,…, 2n, 
2

1·2 0
´́ (2 ) 0

(2 )

n
F n

n

−
 = 


  Hay mínimos. 

• Si k es impar: x = , 3,…, (2n + 1), ( )
( )

2

1·(2 1) 0
´́ (2 1) 0

(2 1)

n
F n

n

− + −
+  = 

+ 
  Hay 

máximos. 

 

Por tanto, 
1

sin
( )

x t
F x dt

t
=   tiene máximos en los puntos x = , 3, 5, …; y tiene mínimos 

cuando x = 2, 4, 6, … 

 

34. (Propuesto en Selectividad, Andalucía)  

Sea f una función continua en el intervalo [2, 3] y F una primitiva de f tal que F(2) = 1 y F(3) 

= 2, calcula:  

a) dxxf  )(  
3  

2    

b) ( )dxxf  7)(5  
3  

2   −   

c) ( ) dxxfxF  )()(  
3  

2  

2   

Solución: 

a) 112)2()3()( )(  
3

2

3  

2  

=−=−== FFxFdxxf . 

 

b) ( )dxxf  7)(5  
3  

2   −  = ( ) 214215757)(5
3

2

3

2

3

2

−=+−=−=−  x dx   dxx  f
  

  

  

  

. 

 

c)  ( ) dxxfxF  )()(  
3  

2  

2  = 
( ) ( ) ( )

3

7

3

1

3

2

3

)2(

3

)3(

3

)( 3333
3

2

3

=−=−=
FFxF

. 

 

35. (Propuesto en Selectividad, Madrid)  

Sea )(xf  una función continua tal que 3 )(  
8  

1  

= duuf . Halla dxxxf 2
2  

1  

3  )(   . 

Solución:  

Si se hace ux =3   dudxx =23 ; y si x = 2, u = 8.   

Con esto: 

dxxxf 2
2  

1  

3  )(    = dxxxf 2
2  

1  

3 3 )(  
3

1

  = duuf  )(  
3

1 8  

1    = 13·
3

1
= . 
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Volúmenes

 

36. Calcula el volumen del cuerpo generado al girar alrededor del eje OX de la superficie 

limitada por la curva siny x=  y el eje OX, entre 0 y . 

Solución: 

El volumen pedido vale: 

 
2  

2

 0  0 0

1 cos 2 1
sin   sin 2

2 2 4 2

x x
V x dx dx x

  −  
=  =  =  − =     u3. 

Recuérdese que 2 1 cos 2
sin

2

x
x

−
= . 

 

37. Halla el volumen generado al girar alrededor del eje OX el recinto plano determinado por 

dicho eje y la curva 3y x x= − .  

Solución: 

La gráfica de 3y x x= −  es la adjunta.  

Puede trazarse calculando los puntos de corte con 

los ejes y dando algunos valores. 

El recinto plano se ha sombreado. 

 

El volumen engendrado es: 

 ( )
0 1 1 1

2
2 2 2 3

1 0 0 0

2 2V y dx y dx y dx x x dx
−

=  +  =  =  −     = 

  =

1
3 5 71

2 4 6

0
0

2 16
2 ( 2 ) 2

3 5 7 105

x x x
x x x dx

  
 − + =  − + = 

    u3. 

38. Halla el volumen del cuerpo limitado por la elipse 1
25

2
2

=+ y
x

 al dar una vuelta completa 

alrededor del eje OX. 

Solución: 

La elipse está centrada en el origen y tiene por semiejes: a = 5 y b = 1. (Recuérdese que la 

ecuación de una elipse centrada en el origen de semiejes a y b es 
2 2

2 2
1

x y

a b
+ = ). 

 
El volumen pedido viene dado por 

 

5
2 3 5 5 5

2 2

 5 0 0
0

20
2 2 1 2

25 75 3

x x
V y dx y dx dx x

−

   
=  =  =  − =  − =    

       (u3). 

  

39. Se consideran, en el plano, las curvas de ecuaciones x
x

y +−=
4

2

 e x
x

y −=
4

2

. Se pide: 

a) El área del recinto finito determinado por dichas curvas.  

b) El volumen del cuerpo de revolución obtenido al girar dicho recinto alrededor del eje OX. 

Solución: 
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Las curvas son dos parábolas. Dando algunos valores se pueden trazar y determinar los 

puntos de corte, que son x = 0 y x = 4: las soluciones de la ecuación 
2 2

2 4 0
4 4

x x
x x x x− + = −  − = . 

El recinto que determinan es el sombreado en la figura siguiente.  

 
 

a) El área encerrada entre esas curvas es: 
4

2 2 2 34 4
2

0 0
0

64 16
2 16

4 4 2 6 6 3

x x x x
A x x dx x dx x

      
= − + − − = − + = − + = − + =      

         u2. 

 

b) El volumen del cuerpo de revolución correspondiente vale: 
42

2 4 3 5 4 34 4
2

0 0
0

32

4 16 2 80 8 3 15

x x x x x x
V x dx x dx

      
=  − + =  − + =  − + =     

        u3. 

 

Otros problemas 

 

40. Halla el área encerrada por la gráfica de la función 2( ) sinf x x x=  y el eje de abscisas 

entre el origen y el primer punto positivo donde f se anule.  

Solución: 

Los puntos de corte de 2( ) sinf x x x=  con el eje de abscisas son x = k. El primer punto de 

abscisa positiva es x = . 

Como en el intervalo [0, ] la función no toma valores negativos, el área pedida viene dada 

por la integral 2

0

sinx xdx


 . 

Una primitiva de 2 sinx xdx  se obtiene por el método de partes. 

Haciendo: ux =2  y sin xdx dv=   2xdx = du y  −cos x = v. 

Luego, 2 sinx xdx  = +− xdxxxx cos2cos2 . 

Para hacer la segunda integral,  xdxx cos , se aplica nuevamente el método de partes. 

Tomando: x = u y cos x dx = dv  dx = du y sinv x= . 

Luego,  xdxx cos  = sin sin  sin cosx x x dx x x x− = + .  

Por tanto: 2 sinx xdx  = 2 cos 2( sin cos )x x x x x− + + . 

En consecuencia,  

 2

0

sinx xdx


  = 2 2 2

0
cos 2( sin cos ) ( 1) 2 2 4x x x x x


 − + + = − − − − =  −  . 
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41. (Propuesto en Selectividad) El número de pasajeros que pasan por la terminal de un

aeropuerto se ajusta durante un día determinado a la función 3432)( tttP −= , siendo t el 

tiempo en horas y P(t) el número de viajeros en el momento t. 

a)  Representa la gráfica de la función en el contexto del problema. ¿Cuál fue la máxima 

afluencia del día y en qué momento se da? 

b)  ¿Qué cantidad de viajeros pasa por esa terminal desde las 0 horas hasta las 18 horas? 

Solución: 

a) )432(432)( 23 tttttP −=−= .  

Vale 0 en los instantes t = 0 y 432=t  20,78 h  20 h 47 min. 

Derivando: 

 2(́ ) 432 3P t t= − , que se anula cuando t = 12.  

Si 0 < t < 12, (́ ) 0P t    P(t) es creciente. 

Si 12 < t < 24, (́ ) 0P t    P(t) es decreciente. 

Por tanto, el máximo se da cuando t = 12, siendo el número de 

pasajeros P(12) = 3456. 

 

Dando algunos valores más puede trazarse su gráfica, que es la 

adjunta. 

Valores: 

 (0, 0); (6, 2376); (10, 3320); (12, 3456), máximo; (15, 3105); (18, 1944); (20, 640). 

 

b) El número de viajeros que pasa por esa terminal entre las 0 y las 18 horas viene dado por el 

valor de la integral: 

 

18
418

3 2

0
0

(432 ) 216 43740
4

t
C t t dt t

 
= − = − = 

   pasajeros. 

 

42. (Propuesto en Selectividad, Galicia) El tiempo, en horas, que tarda un autobús en hacer el 

recorrido entre dos ciudades es una variable aleatoria con función de densidad: 

)3(3,0)( 2xxxf −= , si x  [1, 3]; y 0 en otro caso. 

a) Calcula el tiempo medio que tarda en hacer el trayecto. 

b) Calcula la probabilidad de que la duración del trayecto sea inferior a dos horas. 

Solución: 

a) Si )(xf  es la función de densidad de una variable aleatoria continua definida en [a, b], su 

media viene dada por =
b

a

dxxxf
 

 

)( . 

En este caso:  

  −=
3 

1 

2 )3(3,0· dxxxx = 8,1225,0025,2
4

3,0

3

9,0
3

1

43

=−=







−

xx
. 

 

b)  Si X es la variable que mide el tiempo del trayecto, hay que hallar P(X  2). O, lo que es lo 

mismo, P(1  X  2). En el contesto del problema: 

P(1  X  2) =
 2

2

 1

0,3(3 )x x dx− =

2
2 3

1

0,9 0,3
1 0,35 0,65

2 3

x x 
− = − = 

 
. 
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43. Halla el área limitada por la curva 
2xxey −= , el eje de abscisas, y la recta x = a, siendo a 

la abscisa del punto máximo de la curva. 

Solución: 

Derivando se tiene: 

 
2xxey −=  

222

)21(2´ 22 xxx exexey −−− −=−= . 

       
222

)64()21(24´´ 32 xxx exxexxxey −−− −=−−−= . 

La derivada primera se anula si 
22(1 2 ) 0xx e−− =   21 2 0x− =   

2

1
−=x  o 

2

1
=x . 

La derivada segunda es negativa en 
2

1
=x  y positiva en 

2

1
−=x . Por tanto, el máximo se 

da en 
2

1
=a . 

La curva corta al eje OX en x = 0; por tanto, el intervalo de integración es 
1

0,  
2

 
 
 

.  

En dicho intervalo la curva es siempre positiva, luego el área pedida es: 

 
2

1/ 2

0

xxe dx−  = ( )
2 2

1/ 21/ 2
1/2 0

0 0

1 1 1 1 1 1
2

2 2 2 2 2 2

x xxe dx e e e
e

− − − − − = − = − + = −   . 

 

44. Sea ( )f x  una función derivable en (0, 1) y continua en [0, 1], tal que f(1) = 0 y 

1)´(2
1

0

= dxxxf . Utilizando la fórmula de integración por partes halla 
1

0

( )f x dx . 

Solución: 

Si en la integral  dxxxf )´(2  se toma: 

xu 2=  y dvdxxf =)´(   2du dx=  y )(xfv = . 

Por tanto: 

  dxxxf )´(2 = − dxxfxxf )(2)(2    −= dxxxfxxfdxxf )´(2)(2)(2  

   −= dxxxfxxfdxxf )´(2
2

1
)()( . 

Luego:  

  
1 1

1

0
0 0

1 1 1
( ) ( ) 2 (́ ) 1· (1) 0· (0) ·1

2 2 2
f x dx xf x xf x dx f f= − = − − = −  . 

 

45. (Propuesto en Selectividad, Asturias) Se considera la curva de ecuación xxxy +−= 23 2 . 

a) Calcula la ecuación de la recta tangente a la gráfica de esa curva en el origen.  

b) Dibuja un esquema del recinto limitado por la gráfica de la curva y la recta hallada.  

c) Calcula el área de ese recinto.  

Solución: 

a) xxxy +−= 23 2   143´ 2 +−= xxy  → 0)0( =y ; 1)0´( =y . 

Tangente en (0, 0): xy = . 
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b) La derivada se anula, 0143 2 =+− xx , cuando 




=
−

=
1

3/1

6

12164
x . 

Como 46´´ −= xy   0)3/1´´( y ; 0)1´´( y . Luego, en x = 1/3 se 

tiene un máximo y en x = 1, un mínimo. 

La recta tangente corta a la curva cuando xxxx =+− 23 2     

 x = 0 y x = 2. 

Algunos puntos de la gráfica de la curva son: 

 (–1, –4); (0, 0); (1/3, 4/27), máximo; (1, 0), mínimo; (2, 2). 

 

c) El recinto comprendido entre la recta y la curva es el sombreado en 

la figura adjunta. Como en el intervalo [0, 2] la recta va por encima de 

la curva, el área pedida viene determinada por la integral 

( )( ) ( )
2 2

3 2 3 2

0 0

2 2
  

  

A x x x x  dx x x  dx= − − + = − +  =   

= 
3

4

3

16
4

3

2

4

2

0

34

=+−=







+−

xx
 u2. 

 

46. (Propuesto en Selectividad 2016, Castilla–La Mancha) 

Calcula la integral definida 

2

4

0

cos

2

x
dx



 .  

Nota: Puede ayudarte hacer el cambio de variable t x=  y a continuación aplicar integración 

por partes. 

Solución: 

Si t x=   
1

2
dt dx

x
=   2 · 2x dt dx tdt dx=  = .Por tanto: 

 ( )
cos cos

·2 cos
2 2

x t
dx tdt t t dt= =    

La última integral puede hacerse por el método de partes. 

Tomando: 

 u = t y cosdv tdt=   du dt=  y sinv t=    

Luego,  

cost tdt  = sin sin   sin cost t t dt t t t c− = + +   

Deshaciendo el cambio: 

 
cos

sin cos
2

x
dx x x x= +    

2

4

0

cos

2

x
dx



  = 

2

4

0
sin cosx x x



 +  = sin cos 0 cos0 1
2 2 2 2

   
+ − − = − . 

 


