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TEMA 11. La integral definida
Problemas Resueltos

Integrales definidas

1. Halla el valor de:

3 7 3 1 s
a) J (¥ +2)dx b) _[ LA ¢) '[ x1+x2dx d) '[ xe ¥ Hdx
-2 0 ‘\’ 0 0

Sx+1

Solucion:
Para hallar una primitiva de cada funcion hay que ajustar constantes.

:9+6—(—§—4):§ .
, 3 3

3

a) [ (x2+2)dx = (%3+2xj_

o -2

7

74 87 5 8 8
b) | =2 — 2= Sxrl | =2(6-1)=8.
).o\/5x+1 ’ 5J.0 24/5x+1 ’ (5 g )0 5( )
N
G & Lty 3/2
C)J. 1+ x2dx =1J 2x(1+x2)l/2dx=l-&=l(1+x2)3/2 =1(8—1)=z.
b 2J, 2 3/2 3 3 3

! 1
d) j xe*3x2+ldx - _ lJ‘ (_ 6xe—3x2+1 p _ [_ l 673)‘2*1 j _
0 6 6

0

2. Calcula la integral '[ In(x*)dx .

1
Soluciodn:

Aplicando una de las propiedades de los logaritmos '[ In(x*)dx = J. 21In(x)dx .
1 1

Una primitiva de esa funcion puede calcularse por el método de partes.
1

Tomando: u=Inx = du=—dx; dv=dx = v=ux.
X

Luego:

ZJlnxdx =2(xlnx—jdxj = 2(xh1x—x) )

Por tanto:

J‘eZInxdx:2[xlnx—x]f =2[elne—e—(1In1-1)]=2.

1
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3. Utilizando el cambio de variable ¢ =In x calcula J. ;dx.
e X(4+Inx)

Solucién:

Sit=hx = dtzldx.

x
Ademés:six=e, t=Ine=1;ysix=¢e% t=Ine* =2.

Por tanto,

e & 2
e X(4+Inx) e (4+Inx) x 1 4+t

= 3(1n(4+z))\12 =3(1n6—1n5)=31ng.

4. Calcula las siguientes integrales definidas:
1 1

a) J. arcsin x dx b) I ln(\/x2 +1 —x)dx
0 0

Solucioén:
En ambos casos, una primitiva de las funciones dadas se obtiene por el método de partes.

a) Para I arcsin x dx se hace:

. 1
u=arcsinx y dv=dx = du:—zdx;v:x.
I—x

dx = xarcsinx ++/1—x° .

Luego,

I arcsin xdx = xarcsin x — J- =
1—-x

Por tanto,

1 1
I arcsin x dx = [xarcsenxjtx/l—xﬂ :g—l.

0 0

b) Para calcularJ.ln(\/x2 +1 —x)dx se toma:

u=ln(x/x2+1—x)ydv=dx:>du: ! [ 2x —1de=_—1
VX +1—x\ 24X +1 X +1
Luego

J'ln(m—x)dx = xln(m—x)JrI s dx=xln(m—x)+m.

x*+1

dx;v=x.

Por tanto

J:ln(m—x)dx = (xln(\/m—x)Jr\/m)L =ln(ﬁ—1)+ﬁ_1_
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5. (Propuesto en Selectividad, Madrid) Calcula razonadamente las siguientes integrales
definidas:

a) I ¥ cos x dx b) I _sin2x .
0 14 cos” x

Solucidn:

a) La integral I e”* cos x dx hay que hacerla por partes.

Haciendo u = e**y cosxdx = dv, se tiene: du =2e*dx; v =sinx =

= J. e* cosxdx= e** sinx—J. 2e* sinx dx .

La segunda integral, J. 2¢*" sin x dx , también debe hacerse por el método de partes.

Tomando: u =2e** y sinxdx =dv = du=4e”dx y —cosx=v

Luego,
Ie cosx dx= e sinx— ( 2e** cosx+I 4e** cosxdxj =

= SI e* cosxdx = e sinx +2e* cosx =

= I 2e* sinxdx = é(ezx sin x + 2e** cosx).

Por tanto,

T

J e* cosxdx = [% (ezx sin x + 2e** cos x)} =

0 0

[(ez“ sin 7t + 2e*" cos TE)— (eo sin 0+ 2¢° cos O)] = %(— 2-2e* )

1
5

b)J‘ sin 2x _sin2x
1+ cos” x

Haciendo el cambio cos® x =7 = 2cos x(—sin x)dx = df = 2sinxcos xdx = —dt.

Como sin2x = 2sin xcos x, la integral inicial queda:

J- sin2x_, J‘de: L= inr=—In(1+cos?x).
1+cos” x 1+1

1+ cos® x

Por tanto,
™2 sin2x
J.o 1+cos’ x
—In(1+cos*(n/2))~(~In(l +cos> 0))=—In1+In2=1In2.

dx = (— hl(l +cos? x)}Z/Z =
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Calculo de areas de recintos planos

r e 4 .
6. Calcula el area de la region limitada por y=—, el eje OX y las rectas x = 1, x = 4.
X
Solucioén:
. 4 : :
La funcion y = —, que es una hipérbola equilatera, puede trazarse
X

dando algunos puntos: (0,5, 8); (1, 4); (2, 2); (4, 1); (8, 0,5). 5-

La region es la sombreada en la grafica adjunta.

El 4rea viene dada por la integral definida: 0 5
4
4 dx =[4In x|} =4In4 unidades cuadradas (u?). \
1X

7. Halla la superficie del recinto plano encerrado entre la curva dada por la funcion
f(x)=xe" yel eje OX, en el intervalo [-2, 0].

Solucion:

En el intervalo considerado, el signo de la funcidn es negativo, por tanto, la superficie
buscada viene dada por:

0
S :—j xe“dx.
-2

Aunque la grafica no es imprescindible, es bueno hacerla; al menos, esbozarla.

0
También podria decirse que S = J. xedx|. 2 V
-2
. 0
La integral Ixe“‘dx se hace por partes. _W 0
Tomando:
u=xydv=e'dc = du=dx;v=e".
Se tiene:

J.xe"dx =xe” —Iexdxzxex —e”.
Luego:
0
S:—j xe dx= —[xex —e"]ﬁ2 =1-3e” u.
2

8. Calcula el area encerrada entre la curva de la funcion f(x) = 2x y el eje OX, en el

+x
intervalo [0, 2].

Solucion:

Como en el intervalo de integracion la funcion es positiva, el area pedida es:

2 2 2 4 ¥ 2
A=J. d :J' x—2+ x=|—-2x+4In(2+x) | =
0 2+x 0 2+x 2

0
= 2+4In4—4In2=4mIn2-2 v’
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9. Halla el area de la region plana limitada por la curva y =sin2x y el eje OX en el intervalo
[0, mt].

Solucién:

La funcion y =sin2x es periodica de periodo 7.

Corta al eje OX en los puntos x =0, x =/2 yx = 7.

Su grafica se puede trazar a partir de la de la funcion seno. /"'l - mv ?/4\\%/

El area pedida es la sombreada en la figura adjunta.

Luego:
/2 1 /2
S = 2-[ sin2xdx = 2(_5008 2xj =2 u’

0

0

10. Halla el area de la region plana limitada por la curva y = (sin )c)2 cosx yeleje OXen el

intervalo [0, 7/2].
Solucion:
Como la funcidn es positiva en el intervalo de estudio, la superficie buscada es:

n/2
=l(sinﬁ—sin0j =% u’.

/2
S = J.O (sinx)2 cos xdx =§(sinx)3 0 3 5

1 .
11. Halla el 4rea encerrada entre la curva y =— yeleje OX, entrex=1yx = &%
X

Solucioén:

El recinto es el sombreado de la figura adjunta.

(No es necesario dibujarlo, pues la funcion es positiva en el
intervalo de integracion).

El area es: . T | T
2

'[e ldx:[lnx]f2 =lne’—Inl1=2 v’
1oXx

e . 4
12. Calcula el area de la region limitada por la funcion y =— y la recta que pasa por los
X

puntos (1,4)y (4, 1).

Solucién:
La recta que pasa por los puntos (1, 4) y (4, 1) de la curva tiene por
ecuacion:
x__l — y__4 = y=—x + 5 . }
4-1 1-4

El recinto es el sombreado en la figura adjunta.

1 45
El area de esa region viene dada por la integral definida: \

4 2 4
J. (S—x—ijdx: Sx— _4lnx :1—5—41n4 ul.
1 X 2 X 2
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13. Calcula el drea comprendida entre las parabolas y=x>+x+1 e y=—x>—2x.

Solucioén:

El area es la del recinto sombreado en la figura adjunta. (Como las graficas son parabolas
pueden trazarse facilmente, dando algunos valores).

Las curvas se cortan en x =—1 y en x =—1/2, que son las soluciones de 24

la ecuacion: x? +x+1=—x*—2x < 2x* +3x+1=0.

Luego: /
-1/2 1

-1/2
S :j (—x" = 2x—(x* +x+1))dx :I (-2x* —3x—1)dx=
-1

-1
= —zx3 —§x2 —xj
3 2

-1/2 0
14. Halla el 4rea del recinto plano comprendido entre las graficas y =x* e y = Jx.

=— U /2 A -1/2
24

-1

Solucion:

El recinto plano comprendido entre las graficas y =x* ey = Jx, que L
puede trazarse dando algunos valores, es el adjunto. 11

Los puntos de corte se obtienen resolviendo la ecuacion x* = Jx, cuyas

soluciones son x =0y x = 1. La curva que va por encima es y =+/x .

Luego:

[l (57

2

2. 1 1
33 3

15. Calcula el valor de a para el que las tangentes a la curva y = x" +a en los puntos de
abscisa de valor absoluto 1, pasan por el origen de coordenadas. Halla el area del recinto
limitado por la curva y las dos tangentes.

Solucidn:

La tangente a y = f(x) en el punto de abscisa xo es y— f(x,) = f"(x))(x—x, ).
En nuestro este caso, como f’(x)=2x, se tiene:

o Enx=1: y—(1+a)=2-(x—1) & y=2x-1+a.

Como debe pasar por (0,0) =>0=-1+a=a=1.

La tangente es: y =2x.

e Enx=-1: y—(1+a):—2-(x+1) & y=—2x-1+a.

Por pasarpor (0,0) =>0=-1+a=a=1.
La tangente es: y=—-2x.

El recinto limitado por la curva y las dos tangentes es el sombreado en
la figura adjunta.
El area pedida vale:

1 3 1 .
A=2 I (x> +1)dx— A4, |= 2 X ix _2-222 e
0 3 0 2 3

Ar es un tridngulo de base 1 y altura 2.
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16. Calcula el area encerrada entre las curvas dadas por las funciones f(x)=x>y

g(x)=x> —2x% +2x.

Solucioén:

Para determinar el area interesa conocer los puntos de corte de las curvas y saber qué curva va
por encima de la otra entre esos puntos de corte. También es conveniente hacer un esquema
grafico de la situacion.

Puntos de corte:

f)=gx) = x> =x" -2x"+2x = x* =3x* +2x=0 =
= x(x* =3x+2)=0 = x(x—1)(x—2)=0.
Las curvas se cortan cuandox =0, x=1yx=2.

Posicion de las curvas en los intervalos (0, 1) y (1, 2).

Se hace la diferencia g(x)— f(x), que es g(x)— f(x) = x(x—1)x —2).

Luego:

e Si0<x<1, gx)—f(x)=x(x—Dx—-2)=(+)(-)(=)>0 — g(x)vaporencimade f(x)
e Sil<x<2, gx)—f(x)=x(x—Dx—-2)=(+)+) () <0 — g(x)vapor debajo de f(x)

Por tanto, el area pedida viene dada por

1 2
5= [(e-rehs+ [ (re-gtokr =
0 1
1
=S :I(x3 —3x? +2x)dx+J.Z—x3 +3x7 —2x)dx =
0 1
1
L
El esquema grafico, que puede obtenerse calculando y
representando algunos puntos de las curvas, es el adjunto.

4

¥ 4
=X +x?
4

2
DM B DS U N
4 442

17. Calcula el 4rea de la region acotada del plano limitada por la curva y =x’ —3x* +3x yla
recta y=ux.

Solucidn:

Lacurva y=x"—3x"+3x ylarecta y=x se cortan cuando x =0, x = 1 y x = 2, que son las
soluciones de x’ —3x* +3x=x < x(x2 —3x+ 2) =0.

La region acotada por ellas es la sombreada en la figura adjunta.

El area pedida es
1 2
A=A1+A2=J' (x3—3x2+2x)dx+J. (—x3+3x2—2x)dx 2-
0 1
4 ! 4 2 Al A2
S [ S PR ‘
4 4
0 1 0
“(Loi]s —4+8—4+l—1+1j L} 0 2
4 4 2
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18. Halla el 4rea del recinto limitado por las curvas de ecuacion y=x" e y = |x| .
Solucidn:

Las curvas se cortan cuando x° = |x|

Sus soluciones sonx =0, x=—1 yx=1.

Las curvas son las adjuntas; pueden representarse dando valores: 1

(_17 _1)9 (Oa 0)9 (19 1)
Por tanto:
1

1 1 0 1
=— u2.
o 3

1
S:2J‘(x—x2)a’x:[x2 —2x3)
0 3

19. De la funcién f(x) =ax® +bx*> +cx+d se sabe que tiene un maximo relativo en x = 1,

1
un punto de inflexién en (0, 0) y que J. f(x)dx = % Calculaa, b, cyd.
0

Solucién:
f(x)=ax® +bx* +ex+d — pasapor (0,0)=f(0)=0=d.
f(x) =3ax* +2bx+c¢ — maximoenx=1=f'(1)=0= 3a+2b+c=0 (¥)
[ (x)=6ax+2b — inflexién en (0,0)=f""(0)=0=2b=0=b=0

Luego, la funcion es:
f(x)=ax’ +cx con 3a+c=0(*) =>c=-3a...= f(x)=ax’ —3ax.

Como

I I 4 2
I f(x)dx:é = j (ax3—3ax)a’x:é - | & _ Sax 3 a_3a_s
0 4 0 4 4 4 4

4 2

=>a=-lyc=3
La funcién es: f(x) =—x> +3x.

20. (Propuesto en Selectividad) Calcula el area determinada por las curvas de ecuaciones

y=2x>e y=x"—2x", representadas en el dibujo adjunto.

Solucion:

Los puntos de corte de las graficas se obtienen resolviendo el sistema: 104
{ y=x*-2x?

5.2 = xt—4x? =0 =>x=-2,x=0,x=2.
y=2x

La curva que va por encima, en el intervalo [-2, 2], es y =2x".

Por esto, y por la simetria de ambas curvas: 5
2

S:2J 2(2x2—x4+2x2)dx= 2I (4x2—x4)dx =

0 0

5 2
=2 ix3_x_ zz[g_gj:%u%
3 5 o 3 5 15
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21. Calcula el area del recinto plano limitado por la parabola y* —x =1 y por la recta
y=x-1.

Solucioén:

El recinto es el sombreado en la figura adjunta. Puede dibujarse dando algunos puntos:
Para la parabola: (-1, 0); (0,-1) y (0, 1); (3, -2y (3, 2).

Para la recta: (0, -1) y (3, 2) 2
El corte de la recta con la parabola se produce cuando

x+1=x-1=x=0,x=3.

FEl area sera:

0 3
S=2j \/x+1dx+.[ (Wx+1—=x+1)dx=
-1 0

" (2 < Y 4
H 2+ D)P -t x| = —— =+
3 R R

(x+1)*"°

W

22. Calcula el area encerrada entre la grafica de la funcion exponencial f(x) =e” y la cuerda
a la misma que une los puntos de abscisas x =—1 yx = 1.
Solucidn:

Los puntos de la grafica son: P= (-1, e )y Q=(l, e).
En la figura se dibuja la curva y la cuerda.

El area encerrada entre la curva y la cuerda es la de la parte 4
sombreada en la figura. Su valor es la diferencia del area del
trapecio y la que queda entre la curva y el eje OX.

(e_l + e)-2 1 0

El 4rea del trapecio es: A4, ,, =

=e +e. T . T
2/ 1 o1 2
El area entre la curva y el eje OX es:
1
1
A= I e'dx=e¢" 1 —e—¢’
-1 -

Por tanto, el 4rea de la regién sombreada es: e +e— (e —e! ) =2¢" vk

23. Halla el area de la region limitada por las curvas y =sinx e y =cosx y las rectas x = /4
y x = 5m/4.

Solucidn:

La region es la sombreada en la figura adjunta.

En el intervalo [n/4, 51/4] la curva del seno va por encima %\ . /

de la del coseno. Por tanto, el area pedida viene dada por 0 TN —r

la integral definida /y 0™ \%/
Sm/4

I (sinx—cosx)dx =[—cosx—sinx o
/4

<

/4

= —2+—2+72+—:2«/5 u’.

5w T
4 2 2

Y T .
= —CO0S— —SIn — + CcoS — +sin
4 4 4
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24. Dibuja el recinto finito del plano limitado por la recta x = 1, la pardbola y = x? yla

hipérbola y = 8 . Calcula su érea.
X

Solucién:
Las gréficas se trazan facilmente dando valores.
Algunos puntos: 10
Parabola y = x%:(0, 0); (1, 1), (2, 4).
Hipérbola y = 8 :(1,8);(2,4); 4,2); (8, 1). 81
X
Puntos de corte de la recta x = 1 con las curvas: ¢
(1, 1) con la parabola; (1, 8) con la hipérbola
4
Corte entre las curvas:
_ .2
y=x :>x2:§:>x3:8:>x=2. 27
y=8/x X
El recinto es el sombreado en la figura anterior. Su area viene dada por: 0 2

2 8 x3 2
AZJ (——xzjde[Slnx——J
1\ X 3 |

25. (Propuesto en Selectividad, Extremadura)
a) Calcula los puntos de corte de la recta 2y —x =3 yde larecta y =1 con la rama

= 81n2—§— O—l =81n2—z 2.
3 3 3

hiperbdlica xy =2, x> 0.
b) Dibuja el recinto plano limitado por las tres curvas del apartado anterior.

c¢) Calcula el area de dicho recinto.

Solucion:

a) Los puntos de corte de la curva con cada una de las rectas se obtienen resolviendo los
sistemas:

2y —x=3 2y —x=3
{y * —>(—1,1);{y x2 5 (1,2);

44

= 34

=2
{"y_ >, 1). .
/ :
b) Su grafica es la adjunta. Para representar cada curva - \
basta con dar algunos valores. 0

A ) i 2 3 4
¢) El recinto sombreado puede descomponerse en dos partes: el tridngulo rectangulo de la

izquierda, cuya 4rea vale 1 u?; y el “triangulo” curvo de la derecha, cuya 4rea se calcula por la
integral definida

2
I (3—1jdx = 2Inx-x] =2n2-2-(2In1-1)=2m2-1 v’
1

x
Por tanto, el area total del recinto vale 21n2 u’.
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26. Halla el area del recinto limitado por las curvas y =e™**, y=e ™ y

la recta x = 0.
Solucioén:
El recinto pedido es el sombreado en la figura adjunta.

Corte de las curvas:

+2 -
e = =>x=-1.

El area viene dada por:

0
x+2 X — x+2 —-X
Il (e e ) dx (e +e )

27. (Propuesto en Selectividad, Navarra)

0
2 0 1 1 2
=e +e —e —e =e" —2e+1.
-1

Dadas las funciones f(x)=5-x"y g(x)= iz , calcula el area de la region del plano
X

encerrada entre las graficas de f(x) y g(x).

Solucidn:
Ambas graficas pueden dibujarse dando algunos pares de valores.
Se cortan en la solucidn del sistema:

=5-x°
{y Y :>5—x2:izz>x4—5x2+4:0:>

y=4/x" X
+/25— 1
x’ :$:{4 = x==+1; £2.

Los puntos de corte son:

La region es la sombreada en la figura adjunta. Su area
viene dada por:

—1 2 2
A:J. (S_XZ_izjderJ. (S—xz—izjdx:2j (S—xz—izjde
-2 X 1 X 1 X
3 2
— ol 4 =2(10—§+2j—(5—1+4j =2(3—ZJ=ﬂ .
30, 3 3 3) 3
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Teorema fundamental del calculo integral

28. Aplicando el teorema fundamental del célculo, halla los valores de las constantes a, b, ¢y
d, sabiendo que:

'[ x(t3 —t+1)e’dt = (ax3 + bx? +cx+a’)ex
0
Solucidn:

El teorema fundamental del calculo integral dice:
Si f(x) es una funcion continua en [@, b] y F(x) se define como F(x) = J- f(t)dt , entonces

F(x) es derivable en [a, b] y su derivadaes F'(x) = f(x).

Por tanto, si jx(t3 —t+1)e’dt=(ax3+bx2+cx+d)e" = F(x):(a)f+b)c2+cx+a’)e)r es
0

una primitiva de f(x) = (x3 -x+ l)ex .
Esto es: F'(x)= [(ax3 +bx’ +cx+ d)ex } = (x> —x+1)e".
Luego:
(3ax2 +2bx+c)ex +(ax3 +bx? +cx+d)ex = (X’ —x+De* =
= (ax’ +@Ba+b)x’ +(2b+c)x+(c+d))e" = (x’ —x+1D)e".
Identificando coeficientes se obtiene: a=1; b=-3;¢c=5;d =-4.
29. (Propuesto en Selectividad)

2

Halla los puntos donde se anula la derivada de la funcion f(x) =-2x +j e gy

0
Soluciodn:

2x
Sea g(x) :J- e 1y
0
Por el teorema fundamental del calculo integral se tiene:

2(x) = J:x e = ()" = G(2x) - G(0) - g(x)=G(2x)~G(0),

siendo G'(f) =€’ “10r+24.
Derivando:
g(x)=G2x)-G(0) = g'(x)= (G(2x) — G(O))’z G'(2x)2= 2e* 2024

Con esto, como f(x)=-2x+ g(x), se tendra:

F)==2+g(x)= -2+ 2e4x2—20x+24'

Si f'(x) =0, entonces:

LD 42NN _ ) oy 9 20 BN 42 000 104 () = x=2: x =3
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-1 2
30. Si f'es una funcion continua en el intervalo [-2, 2] tal que J f(t)dt = J f(t)dt, ;se
-2 1

puede asegurar que existen dos numeros, b y ¢ pertenecientes a [-2, 2], talesque b < —1,c > 1
y f(0)=f(c)?

Solucion:

Por el teorema del valor medio del célculo integral, se sabe que si
f(x) es continua en el intervalo [a, b], entonces existe un punto

SlxH

xo € [a, b] tal que

j " @ = (5 —x ) (xy)

Aplicando este teorema en el intervalo [-2, —1], puede asegurase que existe b € [-2, —1], esto

es, —2 < b < -1, que verifica _lf(t)dt = (—1—(—2))-f(b) = f(b)

Analogamente, para el intervalo [1, 2], existe ¢, con 1 <c¢ <2, tal que.

2
J:f(t)dt — Q=D = £()

-1 2
En consecuencia, como J‘ f(t)dt = J f(t)dt , puede asegurarse que existen dos nimeros b y ¢,
-2 1

pertenecientes a [-2, 2], talesque b<—-1,c>1y f(b)= f(c).

31. (Propuesto en Selectividad, Madrid)
Sea la funcion F(x)= I e'dt.
0

a) Calcula F’(x), estudia el crecimiento de F'(x) y halla sus médximos y minimos.
b) Calcula F"'(x) y estudia la concavidad y convexidad de F(x). Esboza la grafica con los

datos obtenidos.
Solucidn:
Por el teorema fundamental del célculo integral,

x? , xz
F(x) =‘[ e di = Gt} =G(x*)-G(0),siendo Gy =" .
0

a) Derivando F(x)=G(x*)—G(0), se deduce:

F(x)=G(x)2x = F'(x) = e_"4 -2x — Esta derivada se anula en x = 0.

Parax > 0, F" > 0 = F sera creciente. (Para x < 0 debe suponerse que la funcion no esta
definida; o, al menos, que no se sabe nada).
Luego, en x =0 la funcion F(x) tiene un minimo, que sera absoluto.

b) F(x)=2¢" —8x'e™ = 207 (1-4x") = F’(x)=0en x= R

V2

, que es un punto de
inflexion.
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: 1 .
(La solucion x = ——= cae fuera del dominio).

V2

Si 0<x< L, F"">0, luego F es convexa (V).

N

) 1
Si x>—, F'’<0, luego F es concava (N).

J2

Con esto, la grafica de F puede ser la adjunta.

1 f:Jz'

32. (Propuesto en Selectividad, Madrid) Sea funa funcion real de variable real, continua y
positiva, tal que J. f()dt=e" +arctgx+a.
0

Determina el valor de la constante a y halla f(x) aplicando el Teorema Fundamental del

Calculo.
Solucién:

Sea F(x) =I f(t)dt =e" +arctgx+a.
0

0
En consecuencia, F(O):J. f@)dt =€’ +arctg0+a=0 =>1+a=0=>a=-1.
0

Como F'(¢)es una primitiva de f(¢), se tendra que:

Fx)=f(x) = f(x)=e"+ ! >
1+x

33. (Propuesto en Selectividad, La Rioja)

Sea la funcion F(x) = I Lnta’z‘ , definida para x > 1.
1t

Halla sus méaximos y minimos relativos.
Solucidn:
Por el teorema fundamental del calculo integral se tiene que si

F(x)= J-xf(t)dt , entonces F'(x) = f(x)

sin x

Por tanto, en este caso, F'(x)=

Los maximos y minimos se dan en las soluciones de F’(x) =0 que hacen negativa o positiva
a F"’(x), respectivamente.
sin x

F'(x)= =0=>x=kn,k=1,2,3...

(cosx)'x—sinx
xz ’

Derivada segunda: F"'(x) =

Signo de la derivada segunda en los puntos x = kmn, k=1,2,3...
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o Sikespar:x=2n,4n,...,2nn, F’'(2nmn)= m >(0 = Hay minimos.
(2nm)
« Sikesimpar:x=m,3mx,..., 2n+ D, F/((2n+Dn)= —1~(2n+1)n;0 <0 = Hay
(@n+Dr)

maximos.

“sint ) , . ) , .
Por tanto, F(x) :j ——dt tiene maximos en los puntos x = 7, 37, 57, ...; y tiene minimos
1t

cuando x = 2m, 4m, 6T, ...

34. (Propuesto en Selectividad, Andalucia)
Sea f'una funcién continua en el intervalo [2, 3] y F una primitiva de f'tal que F(2) =1y F(3)
=2, calcula:

D [ rea

b) .3(5 f(x)=7)dx

o [ (Fey e

Solucién:

2 [ f@de=F@f =FG)-F@)=2-1=1.

b) [ 3(5f(x)—7)dx = sj 3f(x)dx—J. 7 dx = 5—(7x), =5-21+14=-2.

3], 3 3 3 3 3

2

© I (OO (e = F@)[ _(FE) (F@Q) _28 1 _7

35. (Propuesto en Selectividad, Madrid)
8 2

Sea f(x) una funcion continua tal que I f(u)du=3.Halla I f(x*) x7dx.
1 1

Solucidn:
Sisehace x’ =u = 3x’dx=du;ysix=2,u=8.
Con esto:

Il2f(x3)x2dx = %jlzf(x3)3x2dx = %J‘if(u) du = %3 =1.
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Volimenes

36. Calcula el volumen del cuerpo generado al girar alrededor del eje OX de la superficie
limitada por la curva y =sinx y el eje OX, entre 0 y 7.

Solucioén:

El volumen pedido vale:

s

T T _ 2
V:nj sinzxdx:nj Izcos2x X 1ol 2™
2 2 4 2

0 0 0

1—cos2x

Recuérdese que sin’ x = 5

37. Halla el volumen generado al girar alrededor del eje OX el recinto plano determinado por
dicho eje ylacurva y=x—x".

Solucion:
La graficade y=x—x es la adjunta. "
Puede trazarse calculando los puntos de corte con

0

los ejes y dando algunos valores.
El recinto plano se ha sombreado.

El volumen engendrado es:
1

0 1 1
V:nJ. yzdx+nj yzdx:2nJ. yzdx:2nJ. (x—x3)2dx=
0

-1 0 0

1
Z2RI (=2x* +x%)dx=2n| ———+=—| =
0 35 7 105
2

38. Halla el volumen del cuerpo limitado por la elipse % +y? =1 al dar una vuelta completa

¥oo2x qu lon 5
=— u.
0

alrededor del eje OX.
Solucién:

La elipse esta centrada en el origen y tiene por semiejes: a =5y b = 1. (Recuérdese que la
2 2

ecuacion de una elipse centrada en el origen de semiejes ay b es — + y_2 =1).
a b

El volumen pedido viene dado por

5 5 5 2 37
V:nj yzdx:2nj yzdx:2nJ. -2 |de=2n| x— zﬁn (u).
25 75

=5 0 0

39. Se consideran, en el plano, las curvas de ecuaciones y = —x? +xey= % —x . Se pide:

a) El area del recinto finito determinado por dichas curvas.
b) El volumen del cuerpo de revolucion obtenido al girar dicho recinto alrededor del eje OX.
Solucion:
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Las curvas son dos parabolas. Dando algunos valores se pueden trazar y determinar los
puntos de corte, que son x = 0 y x = 4: las soluciones de la ecuacion

2 2
X X
e tx=——x o x —4x=0.
4 4
El recinto que determinan es el sombreado en la figura siguiente.
24 24

-2

a) El area encerrada entre esas curvas es:
X’ X ox? X, ) 64 16
A=J‘ ——+tx—| ——x x:'[ 4 2xfdx=|-—+x" | =——+16=— U’
0 4 4 0 2 6 0 6 3
b) El volumen del cuerpo de revolucion correspondiente vale:
4 2 2 4/ 4 3 5 4 3\
V=nj X dxznj ey | P 232_71 u’.
ol 4 ol 16 2 80 8 3 ) I5

Otros problemas

40. Halla el 4rea encerrada por la grafica de la funcién f(x) = x’sinx y el eje de abscisas
entre el origen y el primer punto positivo donde f'se anule.

Solucién:

Los puntos de corte de f'(x) = x"sinx con el eje de abscisas son x = kr. El primer punto de

abscisa positiva es x = .
Como en el intervalo [0, «t] la funcion no toma valores negativos, el area pedida viene dada

por la integral J x” sin xdx .
0

Una primitiva de .[ x”sin xdx se obtiene por el método de partes.

Haciendo: x* =u y sinxdx=dv = 2xdx =du'y —cosx = v.

Luego, Ix2 sinxdx = —x” cos x + 2jxcos xdx .

Para hacer la segunda integral, J.xcos xdx , se aplica nuevamente el método de partes.

Tomando: x =uycosxdx =dv=dx=duy v=sinx.

Luego, v|Axcosxa’x =xsinx—jsinx dx =xsinx+cosx.

Por tanto: sz sin xdx = —x” cos x +2(xsinx +cosx).

En consecuencia,
T
J- x” sinxdx = [—xz cosx+2(xsinx+cosx)] =’ (-1)-2-2=n"—4.

T
0 0
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41. (Propuesto en Selectividad) El numero de pasajeros que pasan por la terminal de un
aeropuerto se ajusta durante un dia determinado a la funcién P(f) = 432¢ —¢>, siendo ¢ el
tiempo en horas y P(¢) el nimero de viajeros en el momento ¢.

a) Representa la grafica de la funcion en el contexto del problema. ;Cual fue la maxima
afluencia del dia y en qué momento se da?

b) ;/Qué cantidad de viajeros pasa por esa terminal desde las 0 horas hasta las 18 horas?
Solucidn:

a) P(t) =432t —t> =1(432—17).

Vale 0 en los instantes t =0y ¢ = V432~ 20,78 h =20 h 47 min.

Derivando:
P'(t)=432-3¢*, que se anula cuando ¢ = 12.
S10<¢<12, P(t)>0 = P(¢) es creciente. 4000

S112<t<24, P(t) <0 = P(t) es decreciente.

Por tanto, el maximo se da cuando ¢ = 12, siendo el namero de (0 -
pasajeros P(12) = 3456.

Dando algunos valores mas puede trazarse su grafica, que es la 0 . :
adjunta. 10 10 200
Valores:

(0, 0); (6, 2376); (10, 3320); (12, 3456), maximo; (15, 3105); (18, 1944); (20, 640).

b) El nimero de viajeros que pasa por esa terminal entre las 0 y las 18 horas viene dado por el
valor de la integral:
18 e 18
C= J (432t —1)dt = {216t2 —Z} = 43740 pasajeros.
0

0

42. (Propuesto en Selectividad, Galicia) El tiempo, en horas, que tarda un autobts en hacer el
recorrido entre dos ciudades es una variable aleatoria con funcion de densidad:
f(x)=0,33x—x?),six € [1,3];y0 en otro caso.

a) Calcula el tiempo medio que tarda en hacer el trayecto.

b) Calcula la probabilidad de que la duracién del trayecto sea inferior a dos horas.

Solucidn:

a) Si f(x) es la funcidon de densidad de una variable aleatoria continua definida en [a, b], su

b
media viene dada por u = J. xf (x)dx .

En este caso:

3 4P
% _ O,3x :| — 2’025 _ 05225 = 1,8 .

3
U= J.x~0,3(3x —x?)dx = { 3
1

1

b) Si X es la variable que mide el tiempo del trayecto, hay que hallar P(X < 2). O, lo que es lo
mismo, P(1 <X <2). En el contesto del problema:

0,9x> 0,3x’ T

=1-0,35=0,65.

2
P(1<X<2) =j 0,3(3x—x2)dx={ 5
1

1
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43. Halla el area limitada por la curva y = xe ™ , el eje de abscisas, y la recta x = a, siendo a
la abscisa del punto maximo de la curva.
Solucion:
Derivando se tiene:
y= xe ¥ = V= e —2x%e ™ = (1- 2x2)e’)‘2 .
= y'=—dxe™ —2x(1-2x*)e™ =(4x’ —6x)e" .

1 1
V2 V2

. . 1 .. 1 .
La derivada segunda es negativa en x = — Yy positiva en x = ——. Por tanto, el méximo se

V2 V2

La derivada primera se anula si (1—2x° )e_"2 =0=>1-2x"=0 = x=— 0Xx=

daen a:L.

V2

) ) . ., 1
La curva corta al eje OX en x = 0; por tanto, el intervalo de integracion es [0, ﬁ} .
En dicho intervalo la curva es siempre positiva, luego el area pedida es:
12

N2 , A . .
I xe " dx = —lj (—2xe”‘ )d :[_lex } :_16*1/2+1e0 :l_L'
0 2Jo 2 2 2 2 2\e

0

44. Sea f(x) una funcién derivable en (0, 1) y continua en [0, 1], tal que f{1)=0y

1 1
I2xf "(x)dx =1. Utilizando la férmula de integracion por partes halla I f(x)dx .
0 0

Solucidn:

Si en la integral Ifo "(x)dx se toma:

u=2xy ff(x)ydx=dv = du=2dx y v= f(x).
Por tanto:

I2xf ‘(x)dx= 2xf(x)— I2 f(x)dx = ZI f(x)dx =2xf(x)— I2xf "(x)dx

= J- S (x)dx = xf(x)— %J‘fo "(x)dx .

Luego:

[ s, [ 2 =trm-0r@-31--2.

45. (Propuesto en Selectividad, Asturias) Se considera la curva de ecuacion y = x° —2x° +x.

a) Calcula la ecuacion de la recta tangente a la grafica de esa curva en el origen.

b) Dibuja un esquema del recinto limitado por la grafica de la curva y la recta hallada.
¢) Calcula el area de ese recinto.

Solucion:

a) y=x"—2x"+x = y=3x"—4x+1 = »(0)=0; y'(0)=1.

Tangente en (0, 0): y=x.
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b) La derivada se anula, 3x* —4x+1=0, cuando x = 6 -
Como y"=6x—4 = y"’(1/3)<0; y”(1)>0. Luego, en x = 1/3 se

tiene un maximo y en x = 1, un minimo.

La recta tangente corta a la curva cuando x° —2x* +x=x = .
x=0yx=2.

Algunos puntos de la grafica de la curva son:

(-1, -4); (0, 0); (1/3, 4/27), méximo; (1, 0), minimo; (2, 2).

4+16-12 _{1/3

¢) El recinto comprendido entre la recta y la curva es el sombreadoen -1 0 i 2
la figura adjunta. Como en el intervalo [0, 2] la recta va por encima de
la curva, el area pedida viene determinada por la integral

2
A:j (x ¥ —-2x° +x) J. —x3+2x2)dx= 21
0
4 372
= _X_+2i :_4+E:ﬂ uz'
4 3, 3 3

46. (Propuesto en Selectividad 2016, Castilla—La Mancha)

Calcula la integral definida J.T COS2\/; dx

0

Nota: Puede ayudarte hacer el cambio de variable ¢ = Jx y a continuacion aplicar integracion
por partes.
Solucidn:

Si tzx/; = dt:de = 2x/;‘dt=dx:>2tdt=dx .Por tanto:

20x
cos «/; cost
&= I

> Dtdt :I(tcost)dt

La ultima integral puede hacerse por el método de partes.
Tomando:
u=tydv=costdt = du=dt y v=sint
Luego,
tcostdt =tsint—J.sin t dt =tsint+cost+c

Deshaciendo el cambio:

.COSZ\/;dx:\/)_csin\/;+cos\/; =

'nTzcos«/_ =
5 [\/_sm\/_+cos\/_] =

sinE+cosE—0—cos0=E—l.
Jo 2 2 2

r
2
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