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TEMA 10. La integral indefinida 

Problemas Resueltos 
 

Integrales inmediatas 

 

1. Calcula las siguientes integrales:  

a) ( )23 2x x x dx+ −    b) ( ) − dxxx 244   c) 
−

dx
e x

5

2

 

d) dx
x

x

 + 233

5
     e) ( ) + dxx 34cos     f) 

1
sin 2 cos5

3
x x dx

 
− 

   

g) dx
xx

 







−

5

2sen 

2
cos3   h) ( ) dxxx 23cos   i) ( )2 3cos(2 ) 3 xx e dx−−  

j)  dxxx 2)·(sincos     k) ( ) − dxxx
22215   l) ( ) − dxx

2
32  

m)  +
dx

x

x

23

2

     n) 
2

3

1
dx

x+     o) 
2

3

4

3

x
dx

x−  

p) 
2

5

1

x
dx

x−      q) 
2

5

1
dx

x−    r) 
232 xxe dx   

s) ( )
3

1 x dx−       t) ( )
3

1x x dx−    u) 
( )

3
1x

dx
x

−

  

Solución: 

En la mayoría de los casos hay que ajustar constantes y operar cuando sea necesario. 

a) ( )23 2x x x dx+ −  = −+ dxxxx 2/123 2
2

1
= c

x
xx +−+

2/3
2

2

1 2/3
23   

b) ( ) − dxxx 244  = ( ) cxxdxxx +−=− 423 244  

c) 
−

dx
e x

5

2

 =  −−
−

dxe x2)2(
)2(

1
·

5

1
 = ce x +− −2

10

1
 

d) dx
x

x

 + 233

5
 = ( ) cxdx

x

x
++=

+
2

2
33ln

6

5

33

6

6

5
  

e) ( ) + dxx 34cos  = ( ) + dxx 34cos4
4

1
 = ( ) cx ++ 34sin

4

1
 

f) 
1

sin 2 cos5
3

x x dx
 

− 
  = 

1 1 1
2sin 2 · 5cos5

2 3 5
xdx xdx−   = 

1 1
cos 2 sin5

2 15
x x c− − +  

g) dx
xx

 







−

5

2sen 

2
cos3 = 

1 1
6 cos 2sin 2

2 2 10

x
dx xdx

 
− 

    = 
1

6sin cos 2
2 10

x
x c+ +  

h) ( ) dxxx 23cos = ( ) ( ) cxdxxx += 22 3sin
6

1
3cos6

6

1
 

i) Ajustando constantes en cada una de las funciones: 

( )2 3cos(2 ) 3 xx e dx−−  = ( ) ( )2 3 2 31 3
cos(2 ) 3 2cos(2 ) 2

2 2

x xx dx e dx x dx e dx− −− = −    = 

= 2 31 3
sin(2 )

2 2

xx e c−− +  
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j) Ajustando constantes: 

  dxxx 2)·(sincos = ( ) cxxdxx +=
32 sin

3

1
·cos)(sin3

3

1
 

k) ( )
2

25 1 2x x dx− = ( )( ) ( )
( )

3
2

2 3
2 2

1 25 5 5
4 1 2 · 1 2

4 4 3 12

x
x x dx c x c

−
− − − = − + = − − +  

l) Se opera en el integrando: 

 ( ) − dxx
2

32  = ( ) cxxxdxxx ++−=+− 322 3649124  

m) Ajustando constantes: 

  +
dx

x

x

23

2

 = ( ) cxdx
x

x
++=

+ 2ln
3

1

2

3

3

1 3

3

2

  

n) 
2

3

1
dx

x+ . Es inmediata: 
2 2

3 1
3· 3arctan

1 1
dx dx x c

x x
= = +

+ +  . 

o) Ajustando constantes: 
2 2 2

3

3 3 3

4 4·2 3 8 3 8
3

3 3 33 2 3 2 3

x x x
dx dx dx x c

x x x

− −
= − = − = − − +

− − −   .  

p) Ajustando constantes: 

2

5

1

x
dx

x−  = 2

2

2
5 5 1

2 1

x
dx x c

x

−
− = − − +

−  

q) 
2

5

1
dx

x− . Es inmediata: 
2 2

5 1
5 5arcsin

1 1
dx dx x c

x x
= = +

− −   

r) Ajustando constantes: 
2 2 23 3 32 1

2 6
6 3

x x xxe dx xe dx e c= = +    

s) Desarrollando el integrando: 

( )
3

1 x dx−  = ( )2 3 2 3 43 1
1 3 3

2 4
x x x dx x x x x c− + − = − + − +  

También podría hacerse directamente ajustando constantes: 

 ( ) ( )
( )

4

3 3 1
1 ( 1) 1

4

x
x dx x dx c

−
− = − − − = − +   

t) Hay que desarrollar el cubo, multiplicar e integrar: ( )
3

1x x dx− =  

 = ( ) ( )2 3 2 3 4 2 3 4 51 3 1
1 3 3 3 3

2 4 5
x x x x dx x x x x dx x x x x c− + − = − + − = − + − +      

u) Hay que desarrollar el cubo, dividir e integrar:  

 
( )

3
1x

dx
x

−

  = 
2 3

2 2 31 3 3 1 3 1
3 3 ln 3

2 3

x x x
dx x x dx x x x x c

x x

− + −  
= − + − = − + − + 

    

 

2. Calcula las siguientes integrales: 

a) ( )
2

5 1 2x x dx−      b) ( )
2

23 2x x dx−      c) 
21 3

x
dx

x+   

Solución: 
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a) ( )
2

5 1 2x x dx− = ( ) ( )2 2 3 2 3 45 20
5 1 4 4 5 20 20 5

2 3
x x x dx x x x dx x x x c− + = − + = − + +   

b) ( )
2

23 2x x dx−  = ( )4 3 2 5 4 39 4
9 12 4 3

5 3
x x x dx x x x c− + = − + +   

c) 
21 3

x
dx

x+  = ( )2

2

1 6 1
ln 1 3

6 61 3

x
dx x c

x
= + +

+   

 

3. Calcula: 

a) 
2

2

3 1

x
dx

x +
        b) ( )27 3x x dx+      c) 

+
dx

x

xx
2

35
 

Solución: 

a) 2

2 2

2 2 6 2
3 1

3 33 1 2 3 1

x x
dx dx x c

x x
= = + +

+ +
   

b) ( )27 3x x dx+ = ( )
7/2 3/2

5/2 1/2 7/2 3/27 3
7 3 ) 2 2

7 / 2 3 / 2

x x
x x dx c x x c+ = + + = + +  

c) 
+

dx
x

xx
2

35
 =  








+ − dxx

x

2/33
5

 = cxx +
−

+ − 2/1

2/1

3
ln5  = c

x
x +−

32
ln5 .   

 

4. Resuelve las integrales: 

a) ( )sin 2 3cos5x x dx−    b) ( )
2

sin cosx x dx+    c) ( )
2

sin cosx x dx−   

Solución: 

a) ( )sin 2 3cos5x x dx− = 
1 3

sin 2 3cos5 2sin 2 5cos5
2 5

xdx xdx xdx xdx− = −     = 

 = 
1 3

cos 2 sin5
2 5

x x c− − +  

b) ( )
2

sin cosx x dx+  =  

 = ( ) ( )2 2 2sin cos 2sin cos 1 2sin cos sinx x x x dx x x dx x x c+ + = + = + +   

c) ( )
2

sin cosx x dx−  =  

 = ( ) ( )2 2 2sin cos 2sin cos 1 2sin cos cosx x x x dx x x dx x x c+ − = − = + +   

También se puede escribir:  

( )
2 2sin cos sinx x dx x x c− = − + , pues ( ) ( )2 2 2cos 1 sin sin 1x x x x c x x c+ = + − + = − + +  

 

5. Halla:  

a) 4xe dx       b) /3xe dx        c) 
21 xxe dx−   

d) 4x dx       e) 4·3x dx        f) 
2

20 ·3xx dx   

Solución: 
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a) 4xe dx  = 4 41 1
4

4 4

x xe dx e c= +   

b) /3xe dx  = /3 /31
3 3

3

x xe dx e c= +  

c) 
21 xxe dx−  = ( )

2 21 11 1
2

2 2

x xxe dx e c− −− − = − +  

d) 
1

4 4 ·
ln 4

x xdx c= +  

e) 
3 4

4·3 4 3 4· ·3
ln3 ln3

x
x x xdx dx c c= = + = +     

f) 
2 2 2 21 10

20 ·3 10 2 ·3 10·3 · ·3
ln3 ln3

x x x xx dx x dx c c= = + = +   

 

6. Calcula: 

a) ( )x xe e dx−+      b) ( )
2

x xe e dx−+       c) ( )2 sin 2xe x dx−   

Solución: 

a) ( )x x x xe e dx e e c− −+ = − +   

b) ( ) ( )
2

2 2 2 22 · 2x x x x x x x xe e dx e e e e dx e dx e dx dx− − − −+ = + + = + +      =  

= 2 21 1
2

2 2

x xe e x c−− + +  

c) ( )2 sin 2xe x dx−  = 2 21 1 1 1
2 2sin cos 2

2 2 2 2

x xe dx xdx e x c− = + +   

 

7. Resuelve, ajustando constantes, las siguientes integrales: 

a) 
2

1

2
dx

x+       b) 
216

dx

x−       c) dx
x

x

 +

−
 

9

3
2

 

Solución: 

a) 
2

1

2
dx

x+  es parecida a 
2

1
arctan

1
dx x c

x
= +

+ . Para resolverla hay que ajustar 

constantes buscando que aparezca 
2

arctan
1

f
dx f c

f
= +

+ . Puede hacerse lo que sigue: 

 
22 2 2 2 2

1 1 1 2 / 2 2 1/ 2 2 1/ 2
· ·

2 2 2
2 1 12 1 2 1 1

2 22 2 2

x x xx x x
= = = = =

+               + ++ + +                                

. 

Por tanto: 

 
2

1

2
dx

x+  = 
2

2 1/ 2 2
· arctan

2 2 2
1

2

x
dx c

x
= +

 
+  
 

  
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b) 
216

dx

x−  es parecida a 
2

1
arcsin

1
dx x c

x
= +

− . Para resolverla hay que ajustar 

constantes buscando que aparezca
2

arcsin
1

f
dx f c

f
= +

− . Se consigue así: 

 
216

dx

x−  = 
2

1

16 1
16

dx
x 

− 
 

  = 
2

1

4 1
4

dx
x 

−  
 

  = 
2

1

4

1
4

dx

x 
−  
 

 = arcsin
4

x
c

 
+ 

 
  

 

c) dx
x

x

 +

−
 

9

3
2

 = dx
xx

x

 








+
−

+
 

9

3

9 22
 = dx

x
dx

x

x

 +
−

+
 

9

3
 

9 22
. 

La primera integral es casi inmediata: es un neperiano; en ella hay que ajustar constantes. 

La segunda integral también es casi inmediata, aunque algo más difícil: es un arcotangente. 

También hay que ajustar constantes. 

 ( ) 1

2

22
9ln

2

1
 

9

2

2

1
 

9
cxdx

x

x
dx

x

x
++=

+
=

+  . 

 
( )( )

dx
x

dx
x  +

=
+

 
13/

3

9

1
 

9

3
22

 = 
( )( )

dx
x +

 
13/

)3/1·(3

9

3
2

 = 
( )

2

1/ 3
 

/ 3 1
dx

x +  = 2
3

arctan c
x
+







. 

Por tanto: 

 ( ) c
x

xdx
x

x
+







−+=

+

−
 3

arctan9ln
2

1
 

9

3 2

2
. 

 

Integración por descomposición en fracciones racionales 

 

8. Calcula, descomponiendo el integrando, las siguientes integrales: 

a) dx
x

xxx


+−

4

32 32
    b) 

3 2

3

3 5

4

x x
dx

x

− +

     c) 
+−+

dx
x

xxx 235 23

 

d) dx
x

xx


−

4 3

3

     e)  










+

+−
dx

x

xx

14

144
2

2

   f)  +

−
dx

x

x

3

13

  

Solución: 

a) Se escribe el integrando como se indica: 

 dx
x

xxx


+−

4

32 32
= dx

x

x

x

x

x

x

 







+−

4

3

4

2

4

32
 = cx

xx
dx

x
xx +++−=








+− −− ln3

113
2

2

23  

 

b) Dividiendo: 
3 2

3

3 5

4

x x
dx

x

− +

 =
3 2

1 3 5 1 3 5
ln

4 4 4 4 4 8
dx x x c

x x x

 
− + = − − + 

   

 

c) Operando se tiene: 


+−+

dx
x

xxx 235 23

= ( ) −+−+ dxxxxx 2/12/12/32/5 235 =  

= cxxxx ++−+ 2/12/32/52/7 2·2
3

2
3

5

2
5

7

2
= cxxxx +








+−+ 2/123 422

7

2
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d) dx
x

xx


−

4 3

3

= dx
x

x

x

x

 









−

4 3

3

4 3
 = ( )1/4 5/12 3/4 7/124 12

3 7
x x dx x x c− −− = − +  

 

e) 
2 2

2

2 2 2 2

4 4 1 4 1 4 4 1
1 ln(4 1)

4 1 4 1 4 1 4 1 2

x x x x x
dx dx dx x x c

x x x x

   − + +  
= − = − = − + +     

+ + + +        

 

f) Dividiendo el integrando (puede hacerse por Ruffini), se tiene: 

  +

−
dx

x

x

3

13

 =  








+
−+− dx

x
xx

3

28
932 = cxxx

x
++−+− )3ln(289

2

3

3

2
3

 

 

9. a) Comprueba que 
xxx

x

x +
=

+
−

32

1

1

1
. b) Calcula la integral indefinida: 

3

1
dx

x x+ .  

    

Solución: 

a) Efectivamente: 
( ) ( ) xxxx

x

xx

x

x

x

x +
=

+
−

+

+
=

+
−

32

2

2

2

2

1

11

1

1

1
. 

b) Por lo visto:  

 
3

1
dx

x x+  = 2

2

1 1
ln ln( 1)

1 2

x
dx x x c

x x

 
− = − + + 

+   

 

10. Calcula las siguientes integrales: 

a) 
22 3 5

2

x x
dx

x

− +

      b) dx
x

x


−

4

)3( 2

       c) 
+−

dx
x

xx
2

23 532
 

d) 
3 23 4 5x x x

dx
x

− + −
   e)

3 23 4 5

1

x x x
dx

x

− + −

+    f) 
3 2

2

3 4 5

1

x x x
dx

x

− + −

+  

Solución: 

a) 
22 3 5

2

x x
dx

x

− +

  = 21 3 5 3 5
ln

2 2 2 4
x dx x x x c

x

 
− + = − + + 

   

b) dx
x

x


−

4

)3( 2

 =   +−=
+−

dx
x

dxxdxdx
x

xx

4

9

2

3

4

1

4

962

 = cxxx ++− ln
4

9

2

3

8

1 2  

c) 
+−

dx
x

xx
2

23 532
= c

x
xxdx

x
x +−−=








+−

5
3

5
32 2

2
 

d) 
3 23 4 5x x x

dx
x

− + −
 = 2 3 25 1

3 4 4 5ln
2

x x dx x x x x c
x

 
− + − = − + − + 

   

e)
3 23 4 5

1

x x x
dx

x

− + −

+  = ( )2 3 213
3 4 8 2 8 13ln 1

1
x x dx x x x x c

x

 
− + − = − + − + + 

+   

Se ha dividido: 
3 2

23 4 5 13
3 4 8

1 1

x x x
x x

x x

− + −
= − + −

+ +
 

f) 
3 2

2

3 4 5

1

x x x
dx

x

− + −

+  = 2

2 2

4 3 4
3 1

21 1

x x
x dx x x dx

x x

− − 
− + = − + 

+ +    = 
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= ( )2 23 1
ln 1 4arctan

2 2
x x x x c− + + − +  

Se ha dividido: 
3 2

2 2

3 4 5 4
3 1

1 1

x x x x
x

x x

− + − −
= − +

+ +
 

La integral: ( )2

2 2 2

4 4 1
ln 1 4arctan

21 1 1

x x
dx dx dx x x

x x x

−
= − = + −

+ + +    

 

11. Calcula las integrales:  

a)  −+

+
dx

xx

x

2

8
2

   b) − 4

2
2x

dx
   c) 

2

1

2 3
dx

x x− −   d) 
2

1

2 2 12
dx

x x+ −    

Solución: 

Todas pueden hacerse por el método de descomposición en fracciones simples. 

a)  −+

+
dx

xx

x

2

8
2

. 

Como las raíces del denominador son x = 1 y x = −2: )2)(1(22 +−=−+ xxxx , se tiene la 

igualdad:  

212

8
2 +

+
−

=
−+

+

x

B

x

A

xx

x
=

)2)(1(

)1()2(

+−

−++

xx

xBxA
 

Luego: 

 )1()2(8 −++=+ xBxAx  

 si x = 1: 9 = 3A  A = 3 

 si x = –2: 6 = –3B  B = −2 

Con esto: 

   +

−
+

−
=

−+

+
dx

x
dx

x
dx

xx

x

2

2

1

3

2

8
2

=3ln( 1) 2ln( 2)x x c− − + +  

 

b)  − 4

2
2x

dx
. 

Como: 

224

2
2 +

+
−

=
− x

B

x

A

x
=

4

)2()2(
2 −

−++

x

xBxA
   

 )2()2(2 −++= xBxA   




=−

=+

222

0

BA

BA
  

2

1
=A  y 

2

1
−=B  

Luego, 

 ( ) ( ) cxxdx
xxx

dx
++−−=









+
−

−
=

−  2ln
2

1
2ln

2

1

2

2/1

2

2/1

4

2
2

 

 

c) 
2

1

2 3
dx

x x− −     

La ecuación 0322 =−− xx  tiene soluciones reales: x = −1 y x = 3. 

Por tanto: 

 
3132

1
2 −

+
+

=
−− x

B

x

A

xx
  

)3)(1(

)1()3(

32

1
2 −+

++−
=

−− xx

xBxA

xx
  
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  )1()3(1 ++−= xBxA   




=+−

=+

13

0

BA

BA
  

4

1
−=A ; 

4

1
=B  

En consecuencia: 

2

1

2 3
dx

x x− −  = 
1/ 4 1/ 4

1 3
dx

x x

− 
+ 

+ −  = 
1 1 1 1

4 1 4 3
dx dx

x x
− +

+ −   =  

= cxx +−++− )3ln(
4

1
)1ln(

4

1
 

 

d) 
2

1

2 2 12
dx

x x+ −     

El denominador: ( )( )22 2 12 2 2 3x x x x+ − = − + . 

La descomposición que se hace es:  

( )2

1

2 2 12 2 2 3

A B

x x x x
= +

+ − − +
=

( 3) 2 ( 2)

( 2)( 3)

A x B x

x x

+ + −

− +
 

Luego: 

 1 ( 3) 2 ( 2)A x B x= + + −  

si x = 2: 1 = 5A    A = 1/5 

si x = –3: 1 = –10B    B = −1/10 

Por tanto: 

 
2

1

2 2 12
dx

x x+ −  = 
( )
1/ 5 1/10 1 1 1 1

2 2 3 10 2 10 3
dx dx dx

x x x x

 
− = −  − + − + 

    = 

 =
1 1

ln( 2) ln( 3)
10 10

x x c− − + +  

 

12. Calcula las integrales: 

a) 
2

1

1
dx

x −    b) 
2 1

x
dx

x −     c) 
2

2 1

x
dx

x −    d) 
3

2 1

x
dx

x −  

Solución: 

a) 
2

1

1
dx

x −  → Hay que descomponer la función dada en fracciones simples. 

 
111

1
2 +

+
−

=
− x

B

x

A

x
=

1

)1()1(
2 −

−++

x

xBxA
 

Luego: 

 )1()1(1 −++= xBxA   BAxBA −++= )(1  

Identificando coeficientes: 

 




−=

+=

BA

BA

1

0
  

2

1
=A ; 

2

1
−=B  

Con esto: 

    +
−

−
=

−
dx

x
dx

x
dx

x 1

2/1

1

2/1

1

1
2

 = cxx ++−− )1ln(
2

1
)1ln(

2

1
 

 

b) Es inmediata: ( )2

2 2

1 2 1
ln 1

2 21 1

x x
dx dx x c

x x
= = − +

− −   
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c) Se transforma el integrando como sigue: 

 
2 2

2 2 2 2

1 1 1 1
1

1 1 1 1

x x
dx dx dx x dx

x x x x

− +  
= = + = + 

− − − −     = 

= (la última integral se ha hecho más arriba) = 
2 1 1

ln( 1) ln( 1)
2 2 2

x
x x c+ − − + +  

d) Es inmediata si se transforma el integrando como sigue: 

  ( )
3 2

2

2 2

1
ln 1

2 21 1

x x x
dx x dx x c

x x

 
= + = + − + 

− −    

 

13. Halla: 

a) 
2

3 1

2 1

x
dx

x x

+

+ +    b) 
2

2

2 1

x
dx

x x

+

− +   c) 
2

3

4 5
dx

x x− +   d) 
2

2 1

2 2

x
dx

x x

+

+ +  

Solución: 

a) El denominador tiene una raíz real doble: ( )
22 2 1 1x x x+ + = + .  

Por tanto, se hace la descomposición: 

22 )1(112

13

+
+

+
=

++

+

x

B

x

A

xx

x
  A = 3; B = –2 

Luego,  

2

3 1

2 1

x
dx

x x

+

+ +  = 
2

3 2 2
3ln( 1)

1 ( 1) 1
dx x c

x x x

 
− = + + + 

+ + +   

 

b) 
2

2

2 1

x
dx

x x

+

− +   

Como el denominador ( )
22 2 1 1x x x− + = − , se hace la descomposición: 

1)1(12

2
22 −
+

−
=

+−

+

x

B

x

A

xx

x
=

2)1(

)1(

−

−+

x

xBA
 

Luego: 

 )1(2 −+=+ xBAx  

Si x = 1: 3 = A  A = 3;  si x = 0: 2 = A – B  B = 1 

Con esto: 

 
2 2

2 3 1

2 1 ( 1) 1

x
dx dx dx

x x x x

+
= +

− + − −   = cx
x

+−+
−

−
)1ln(

1

3
 

 

En los casos que siguen el denominador no tiene raíces reales. 

c) ( )
22 4 5 2 1x x x− + = − + . 

Se puede escribir: 
( )

22

3 3

4 5 2 1x x x
=

− + − +
   

 
( )

( )22

3 3
3arctan 2

4 5 2 1
dx dx x c

x x x
= = − +

− + − +   

 

d) ( )
22 2 2 1 1x x x+ + = + + . 
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Por tanto: 

 
( )

22 2 2 2 2

2 1 2 2 1 2 2 1 2 2 1

2 2 2 2 2 2 2 2 2 2 1 1

x x x x

x x x x x x x x x x x

+ + − + +
= = − = −

+ + + + + + + + + + + +
   

 
2

2 1

2 2

x
dx

x x

+

+ +  = 
( )

( ) ( )2

22

2 2 1
ln 2 2 arctan 1

2 2 1 1

x
dx dx x x x c

x x x

+
− = + + − + +

+ + + +   

 

14. Propuestas en UNED. Resuelve las siguientes integrales: 

a)  −

−+
dx

xx

xx
3

2 12
  b)  +

+
dx

xx

x
3

2 12
   c)  −+−

++−
dx

xxx

xx

1

12
23

2

. 

Solución: 

a)  −

−+
dx

xx

xx
3

2 12
.  

Como ( ) ( )( )11123 +−=−=− xxxxxxx  se hace la descomposición: 

 
11

12
3

2

+
+

−
+=

−

−+

x

C

x

B

x

A

xx

xx
=  

 = 
( ) ( ) ( )

( )1
111

2

2

−

−+++−

xx

xCxxBxxA
 = 

( ) ( )
( )12

2

−

−−+++

xx

AxCBxCBA
 

Igualando los numeradores primero y último se obtiene el sistema: 









−=−

=−

=++

1

2

1

A

CB

CBA

  

 A = 1; B = 1, C = –1. 

Por tanto,  

  −

−+
dx

xx

xx
3

2 12
 = ( ) ( ) cxxxdx

xxx
++−−+=









+
−

−
+ 1ln1lnln

1

1

1

11
 

b)  +

+
dx

xx

x
3

2 12
.  

El denominador ( )3 2 1x x x x+ = +  → El segundo factor no tiene raíces reales.  

Con esto: 
( ) ( )

( )1
1

1

12
2

2

23

2

+

+++
=

+

+
+=

+

+

xx

CBxxxA

x

CBx

x

A

xx

x
  A = 1; B = 1; C = 0. 

Luego: 

  +

+
dx

xx

x
3

2 12
 = ( ) cxxdx

x

x
dx

x
+++=

+
+  1ln

2

1
ln

1

1 2

2
 

c)  −+−

++−
dx

xxx

xx

1

12
23

2

. 

Como ( )( )111 223 +−=−+− xxxxx  se hace la descomposición: 

 
111

12
223

2

+

+
+

−
=

−+−

++−

x

CBx

x

A

xxx

xx
=  

 = 
( ) ( )( )

( )( )2
2

11

11

+−

−+++

xx

xCBxxA
 = 

( ) ( )

( )( )2
2

11 +−

−++−++

xx

CAxCBxBA
 A = 1; B = –2; C = 0. 

Luego:  −+−

++−
dx

xxx

xx

1

12
23

2

 = 
2

1 2

1 1

x
dx dx

x x
−

− +   = ( ) ( )2ln 1 ln 1x x c− − + +  
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Método de integración por partes 

 

15. Calcula las siguientes integrales: 

a)  xdxx cos    b)  dxxe x2    c)  dxex x32 ·     d) 
232 xx e dx     

e) ( )lnx x dx   f) arcsin xdx   g) 2 sin(2 )x x dx    h) 3 cosx xdx  

Solución: 

Todas pueden resolverse aplicando el método de integración por partes. 

 

a)  xdxx cos   

Se toma: x = u y cosdv xdx=   du dx=  y sinv x=    

Luego,  

 xdxx cos  = sin sin  sin cosx x x dx x x x c− = + +   

 

b)  dxxe x2  

Tomando: u x=   du dx= ;  dvdxe x =2     = dvdxe x2   xev 2

2

1
=  

Luego: 

  dxxe x2 = − dxexe xx 22

2

1

2

1
= cexe xx +− 22

4

1

2

1
 

 

c)  dxex x32 · . 

Tomando: 2xu =   xdxdu 2= ; dxedv x3=   xev 3

3

1
=  

Se tiene:   −= dxxeexdxex xxx 33232

3

2

3

1
  

 

La segunda integral,  dxxe x3 , también se hace por partes.  

Tomando ahora:  u x=   du dx= ;  3xdv e dx=   31

3

xv e=  

Se tiene:  dxxe x3  = − dxexe xx 33

3

1

3

1
 = xx exe 33

9

1

3

1
−  

Por tanto:  

 −= dxxeexdxex xxx 33232

3

2

3

1
 = cexeex xxx +








−− 3332

9

1

3

1

3

2

3

1
 = 

 = cexeex xxx ++− 3332

27

2

9

2

3

1
 

 



Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 10  208 

www.matematicasjmmm.com José María Martínez Mediano

d) 
232 xx e dx .    

Haciendo 2xu =  y dxxedv x2

2=  se tiene: 
232 xx e dx =

2 2 2 22 22x x x xx e xe dx x e e c− = − +  

 

e) ( )lnx x dx . 

Tomando: lnu x x=    ( )ln 1du x dx= + ;  dv dx=   v = x 

Luego, ( )lnx x dx = ( ) ( )2 2ln ln ln lnx x x x x dx x x x x dx xdx− + = − +     

En el segundo miembro aparece la misma integral, que se traspone al primer miembro, 

obteniéndose,  

 ( )2 lnx x dx = c
x

xx +−
2

ln
2

2   

De donde, ( )lnx x dx  = c
x

xx +−
4

ln
2

1 2
2  

 

f) arcsin xdx   

Se toma: arcsinu x=    dx
x

du
21

1

−
= ;  dv dx=   v = x 

Luego, 2

2
arcsin arcsin arcsin 1

1

x
xdx x x dx x x x c

x
= − = + − +

−   

 

g) 2 sin(2 )x x dx  

Haciendo: ux =2 , sin 2xdx dv=   2xdx = du; xv 2cos
2

1
−=  

Luego, 2 sin(2 )x x dx  = 21
cos 2 cos 2

2
x x x xdx− +   

Para hacer la segunda integral se aplica nuevamente el método de partes. 

cos 2x xdx  

Tomando: x = u;  cos2dv xdx=   dx = du; xv 2sin
2

1
=  

Luego, cos 2x xdx  =
1 1 1 1

sin 2 sin2  sin 2 cos 2
2 2 2 4

x x x dx x x x− = +   

Por tanto: 2 sin(2 )x x dx  = cxxxxx +++− 2cos
4

1
2sin

2

1
2cos

2

1 2  

 

h) 3 cosx xdx . 

Se hace: 3u x= ; cosdv xdx=   23du x dx= ; sinv x=    
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Luego: 

3 cosx xdx  = 3 2sin 3 sin   x x x x dx−    

 

Segunda integral:  2 23 sin   3 cos 6 cosx x dx x x x xdx= − +   

(Se ha hecho: 3x3 = u;  sin xdx dv= ) 

 

Tercera integral: 6 cos 6 sin 6cosx xdx x x x= +   

(Se hace: 6x = u;  cos x dx = dv) 

Luego: 

3 3 2cos sin 3 cos 6 sin 6cosx xdx x x x x x x x c= + − − + .  

 

16. Utilizando el método de integración por partes, calcula  dx
e

x
x

 

Solución: 

  dx
e

x
x

= − dxxe x   

Se hace:  

 u = x y dxedv x−=    dxdu = ; xev −−=  

Luego: 

  − dxxe x =  −− +− dxexe xx = cexe xx +−− −−  

 

17. A partir del resultado de ln xdx , calcula las siguientes integrales. 

a) 2 ln xdx   b) ln(2 )x dx   c) 2ln x dx   d) ( )
2

ln x dx  

Solución: 

ln xdx  se calcula por el método de partes. 

Tomando: u = ln x    dx
x

du
1

= ;   dv = dx    v = x  

Luego: 

 ln ln lnxdx x x dx x x x c= − = − +   

Con esto: 

a) ( ) cxxxdxxxdxx +−=





 −=  ln2ln2ln2  

b) ( ) ( )ln(2 ) ln 2 ln ln 2 ln ln 2 · lnx dx x dx dx xdx x x x x c= + = + = + − +     

c) 2ln 2lnx dx xdx=   = ( ) cxxxdxxxdxx +−=





 −=  ln2ln2ln2  
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d) ( )
2

ln x dx  

Tomando: ( )
2

lnu x=    ( )
1

2 ln ·du x dx
x

= ;   dv = dx   v = x  

Luego: 

 ( )
2

ln x dx  = ( ) ( )
2 21

ln 2ln · · ln 2lnx x x xdx x x xdx
x

− = −   = 

 = ( ) ( )
2

ln 2 lnx x x x x c− − +  

 

Integración por cambio de variable 

 

18. Calcula las siguientes integrales haciendo el cambio que se indica: 

a) 21x x dx−  → ( 21 x t− = )   b) 3(sin )x dx  → (cos x = t)  

c)  − )ln4( xx

dx
 → ( xt ln= )     d)  + dxxx 3 24·  → ( 24 x t+ = ) 

Solución: 

a) Si 21 x t− =   
1

2
2

xdx dt xdx dt− =  = − . 

Por tanto:  

  − dxxx 21  = ( ) ( )
3/2

3
2 1/2 21 1 1

1 · 1
2 2 3 / 2 3

t
x xdx t dt c x c− = − = − + = − − +   

Observación:  − dxxx 21  puede hacerse directamente (es inmediata), pues: 

  − dxxx 21  = ( )2 1/21
2 (1 )

2
x x dx− − −  = cxc

x
+−−=+

−
− 2/32

2/32

)1(
3

1

2/3

)1(

2

1
 

 

b) Si cos x = t  sin xdx dt− = . 

Como  

 3sin xdx  = ( )( )2 2 2sin ·sin sin ·(1 cos ) 1 cos sinx xdx x x dx x xdx= − = − − −      

  ( )
3

3 2 31
sin 1 cos cos

3 3

t
xdx t dt t c x x c= − − = − + + = − + +   

 

c) Si xt ln=   dx
x

dt
1

= .  

Luego:  

 − )ln4( xx

dx
 = 

1 1
·

(4 ln )
dx

x x

 
 −    =  −

dt
t4

1
 = ( ) ( ) cxct +−−=+−− ln4ln4ln  

 

d)  Si 24 x t+ =   
1

2
2

xdx dt xdx dt=  =   

Por tanto: 

( ) ( ) ( )
4/31/3

4/3
3 2 2 1/3 21 1 3

· 4 4 · · · 4
2 2 4 / 3 8

t
x x dx x xdx t dt c x c+ = + = = + = + +      
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Observación: También se puede hacer ajustando constantes, pues: 

  + dxxx 3 24·  = ( ) ( )
1/3

21
2 4 (́ )· ( )

2

n
x x dx f x f x

 
+ =  

    = 
( )

c
x

+
+

+
+

13/1

4

2

1
13/12

 =  

 = ( ) cx ++3 424·
8

3
 

 

19. Halla la integral indefinida dx
x +1

1
 mediante el cambio de variable tx = . 

Solución: 

Si tx =  dtdx
x

=
2

1
  tdtdtxdx 22 == . 

Por tanto,  

 dt
t

dt
t

t
dt

t

t
tdt

t
dx

x  








+
−=

+

−+
=

+
=

+
=

+ 1

2
2

1

2)1(2

1

2
2

1

1

1

1
= ctt ++− )1ln(22 = 

 = (deshaciendo el cambio) = ( ) cxx ++− 1ln22  

 

20. Propuestos en UNED. Calcula: 

a)  +
dx

x

x

22

2
2

     b)  dxxx 322 tan  

Solución: 

a)  +
dx

x

x

22

2
2

 → puede hacerse el cambio tx =2   dtdxx =2ln2   
1

2
ln 2

x dx dt=  . 

Por tanto, 

  +
dx

x

x

22

2
2

 =  +
dt

t 2

1

2ln

1
2

 = (Ver problema 2. a)) =  

 = c
t
+

2
arctan

2

1
·

2ln

1
 = c

x

+
2

2
arctan

2

1
·

2ln

1
. 

 

b)  dxxx 322 tan  → puede hacerse el cambio tx =3   dtdxx =23 . 

Por tanto,  

  dxxx 322 tan  =  tdt2tan
3

1
 = ( ) −+ dtt 1tan1

3

1 2  = ( ) ctt +−tan
3

1
 = ( ) cxx +− 33tan

3

1
 

 

21. Calcula  dxex x47   → Sugerencia: cambio 4t x= ) 

Solución: 

Si 4t x=   34dt x dx= . 

Sustituyendo: 

 ( )
4 47 4 3 1 1

· ·
4 4

x x t tx e dx x e x dx te dt te dt= = =     

Esta integral se hace por partes: 

 u t=    du dt= ;  tdv e dt=     tv e=  

Luego: 
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 ( )1 1 1

4 4 4

t t t t tte dt te e dt te e c
 

= − = − + 
    

Deshaciendo el cambio: ( )
4 4 47 41 1

4 4

x t x xx e dx te dt x e e c= = − +   

Observación: se termina antes si se hace directamente por partes, tomando: 

 4xu =      dxxdu 34=  

 dxexdv x43=     
4

4

1 xev =  

Por tanto:  

  dxex x47  = − dxexex xx 44 34

4

1
 = ceex xx +−

44

4

1

4

1 4

 

 

22. Haciendo el cambio de variable xe t= , halla: 

a) 

( )
2

1

x

x

e
dx

e+
       b) 

2 3 2

x

x x

e
dx

e e+ +  

Solución: 

a) Si xe t=   xe dx dt= . 

Por tanto: 

  

( ) ( )
( ) ( )

2 1

2 2

1 1
1 1

111

x

x

e
dx dt t dt t c c

tte

− − −
= = + = − + + = +

+++
   . 

Deshaciendo el cambio:  

( )
2

1

11

x

x
x

e
dx c

ee

−
= +

++
  

 

b) Si xe t=  se tiene: 
2 2

1

3 2 3 2

x

x x

e
dx dt

e e t t
=

+ + + +    

Por descomposición en fracciones simples: 

 
( ) ( )

( )( )2

2 11

1 2 1 23 2

A t B tA B

t t t tt t

+ + +
= + =

+ + + ++ +
   ( ) ( )

1
1 2 1

1

A
A t B t

B

=
= + + + 

= −
  

Por tanto, 

 ( ) ( )
2

1 1 1 1
ln 1 ln 2 ln

1 2 23 2

t
dx dt t t

t t tt t

+ 
= − = + − + = 

+ + ++ +       

Deshaciendo el cambio:  

2

1
ln

3 2 2

x x

x x x

e e
dx c

e e e

+
= +

+ + +  

 

23. (Propuesto en Selectividad, Aragón, junio 14). Usando el cambio de variable ln( )t x= , 

determina el valor de la integral: 
( )

( )( )

3

2

1 3ln( ) ln( )

1 ln( )

x x
dx

x x

+ +

−   

Solución:  
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a) Si ln( )t x=   
1

dt dx
x

= ; luego: 

 
( )

( )( )
( )

( )( )

3 3 3

22 2

1 3ln( ) ln( ) 1 3ln( ) ln( ) 1 1 3
·

11 ln( ) 1 ln( )

x x x x t t
dx dx dt

x tx x x

+ + + + + +
= =

−− −     

La última integral se hace por descomposición en fracciones simples. Dividiendo: 

    
3

2 2

1 3 4 1

1 1

t t t
t

t t

+ + +
= − +

− −
 → 

2 2

4 1 (1 ) (1 )

1 11 1

t A b A t B t

t tt t

+ + + −
= + =

− +− −
  

5

2
A = ; 

3

2
B = − . 

Por tanto: 

 ( ) ( )
3 2

2

1 3 5 / 2 3 / 2 5 3
ln 1 ln 1

1 1 2 2 21

t t t
dt t dt t t c

t tt

+ +  
= − + − = − − − − + + − +−     

Deshaciendo el cambio: 

  
( )

( )( )

3

2

1 3ln( ) ln( )

1 ln( )

x x
dx

x x

+ +

−  = ( ) ( )
2(ln ) 5 3

ln 1 ln ln 1 ln
2 2 2

x
x x c− − − − + + . 

 

Otras integrales 

 

24. Calcula las siguientes integrales. 

a) 
2

2

1
dx

x+    b) 
2

2

1

x
dx

x+   c) 
2

2

1
dx

x−   d) 
( )

2

2

1
dx

x+    e) 
( )

2

2

1

x
dx

x+  

Solución: 

Obsérvese que las cinco integrales tienen cierto parecido. No obstante, sus resultados son 

muy diferentes. 

a) Es inmediata: 
2

2

1
dx

x+  = 
2

1
2·

1
dx

x+  = 2arctan x c+ . 

 

b) También es inmediata: ( )2

2

2
ln 1

1

x
dx x c

x
= + +

+ . 

 

c) Hay que hacerla por descomposición en fracciones simples. 

2

2

1
dx

x−  = 
1 1

1 1
dx

x x

 
+ 

+ −  = ( ) ( )ln 1 ln 1x x c+ + − +  

 

d) Es inmediata: 
( )

( )
( )

12

2

12 2
2 1 2·

1 11

x
dx x dx c c

xx

−− +
= + = + = − +

− ++  . 

 

e) Hay que hacerla por descomposición en fracciones. 

 
( ) ( ) ( ) ( )

2 2 2 2

2 2 2 2 2(1 ) 2

1 1 1 1

x x x
dx dx dx dx

x x x x

+ − + −
= = +

+ + + +     = 
( )

( )
22

2 1
1

dx x dx
x

−
− +

+   = 

 = ( )
2

2ln 1
1

x c
x

+ + +
+
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25. Propuestos en UNED. Resuelve:

a)  +

−
dx

x

x

14

1
2

2

   b)  −

−
dx

x

x

4

25
2

    c)  dx
x

x
2

ln
   d) 2ln xdx   

Solución: 

a) Para resolver  +

−
dx

x

x

14

1
2

2

 hay que transformar el integrando. 

Dividiendo: 

 
2

2 2

1 1 5 / 4

4 1 4 4 1

x

x x

−
= −

+ +
 → (La división debe hacerse aplicando el algoritmo tradicional). 

Luego:  








+
− dx

x 14

4/5

4

1
2

= 
( )

( ) cxdx
x

dx +−=
+

−  2arctan
8

5

4

1

12

2

8

5

4

1
2

  

 

b)  −

−
dx

x

x

4

25
2

  
( ) ( )
( )( )22

22

224

25
2 +−

−++
=

+
+

−
=

−

−

xx

xBxA

x

B

x

A

x

x
  A = 2; B = 3 

  −

−
dx

x

x

4

25
2

= ( ) ( ) cxxdx
x

dx
x

+++−=
+

+
−  2ln32ln2

2

3

2

2
 

 

c)  dx
x

x
2

ln
 → Partes: 








== dvdx

x
ux

2

1
      ;ln   








−==

x
vdx

x
du

1
      ;

1
 

Luego: c
x

x
x

dx
x

x
x

dx
x

x
+−−=+−= 

1
ln

11
ln

1ln
22

 

 

d) 2ln xdx  → Partes:  u = ln x   dx
x

du
1

= ; dv = dx   v = x  

Luego: ( )2 ln 2 ln 2 lnxdx x x dx x x x c
 

= − = − + 
    

 

26. Resuelve: 

a) ( )1
cos

2
x dx

x     b) dxx cos 2    c) 
2

7 2

6 10

x
dx

x x

+

− +  

Solución: 

a) La ( )1
cos

2
x dx

x  puede considerarse inmediata, de la forma ·́cos sin f f dx f= , con 

f x= . En este caso: ( )1
cos sin

2
x dx x c

x
= +   

No obstante, puede ser más asequible hacer el cambio t x=   
1

2
dt dx

x
= . 

Obteniéndose: 

 ( ) ( )
1 1

cos cos cos sin sin
2 2

x dx x dx tdt t c x c
x x

 
= = = + = + 

      

 

b) La integral 2cos  x dx  puede hacerse por partes. 

Haciendo: xu cos=  y dvxdx =cos   xdxdu sin−= ; v = sin x  
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Luego:   

2cos  x dx = dxxxx  sin·sincos 2+  = ( )dxxxx  cos1·sincos 2 −+   

 dxxdxxxdxx  −+= 22 cos·sincoscos   xxxdxx += ·sincoscos2 2  

Despejando: k
x

xxdxx ++= 2
·sincos

2

1
cos2  

De otra forma: Haciendo el cambio trigonométrico 
2

2cos1
cos 2 x

x
+

= , se tiene: 

 ( ) kxxdxxdx
x

dxx +







+=+=

+
=  2sin

2

1

2

1
2cos1

2

1

2

2cos1
cos2  

 

c) 
2

7 2

6 10

x
dx

x x

+

− +  → Puede escribirse en el numerador la derivada del denominador. 

Así: 

 
( ) ( )

2 2 2 2

7
2 6 23 2 67 2 7 232 ·

6 10 6 10 2 6 10 6 10

x xx

x x x x x x x x

− + −+
= = +

− + − + − + − +
 =

( )

( )
22

2 67 23
·

2 6 10 1 3

x

x x x

−
+

− + + −
 

Por tanto:  

 
2

7 2

6 10

x
dx

x x

+

− +  = 
( )

( )
22

2 67 23
·

2 6 10 1 3

x
dx dx

x x x

−
+

− + + −   =  

 = 27
ln( 6 10) 23arctan( 3)

2
x x x c− + + − +  

 

27. Integra: 

a) 
2

1

x x

x

e e
dx

e

+

+    b) 
2

1

x

x

e
dx

e+   c) 
4

sin

cos

x
dx

x   d) 2tan xdx    e) 
4

2

1

x
dx

x−   

Solución: 

a) Sacando factor común en el numerador: 

 
2

1

x x

x

e e
dx

e

+

+  = 
( )1

1

x x

x x

x

e e
dx e dx e c

e

+
= = +

+   

 

b) Haciendo el cambio xe t=   xe dx dt=   

 
2

1

x

x

e
dx

e+  = ( ) ( )
·

1 ln 1 ln 1
1 1 1

x x
x x

x

e e t t
dx dt dx t t c e e c

e t t

 
= = − = − + + = − + + 

+ + +     

 

c) Es inmediata, aunque puede hacerse el cambio cos x t=   sin xdx dt− = . 

Por tanto: 
4

sin

cos

x
dx

x  = 
3

4

4 3 3

1 1 1

3 3 3cos

t
dx t dt c c c

t t x

−
−−

= − = − + = + = +
−   

 

d) Sumando y retando 1 al integrando se tiene: 

 2tan xdx  = ( ) ( )2 21 tan 1 1 tan tanx dx x dx dx x x c+ − = + − = − +    

e) Haciendo 2 2x t xdx dt=  = ; de donde:  
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 2

4 2

2 1
arcsin arcsin

1 1

x
dx dt t c x c

x t
= = + = +

− −   

 

28. (Propuesto en Selectividad, Aragón, junio 13 y septiembre 14) 

a) Determina la función )(xf  cuya derivada es xxexf 52)´( =  y que verifica que 2)0( =f . 

b) La derivada de una función () es: ( ) ( )
3

1 3x x− − . Determina la función ( )f x  sabiendo 

que (0) 1f = .  

Solución: 

a) La función )(xf  es una primitiva de xxexf 52)´( = :  dxxexf x= 52)( . 

Esta integral se hace por partes, tomando: 

u = 2x   dxdu 2= ; dxedv x5=   xev 5

5

1
=   

Luego:  

dxxexf x= 52)(  = − dxeex xx 55

5

1
·2

5

1
·2  = 






 −  dxexe xx 55

5

2
 = cexe xx +








− 55

5

1

5

2
 

 

Como 2)0( =f , entonces: 2
5

1
0

5

2
)0( 0 =+








−= cef   

25

52

25

2
2 =+=c . 

Por tanto, 
25

52

5

1

5

2
)( 55 +








−= xx exexf . 

 

b) La función pedida debe ser una primitiva de ( ) ( )
3

1 3x x− − ; esto es: 

 ( ) ( )
3

( ) 1 3f x x x dx= − −  

Operando:  

 ( ) ( )
3

1 3x x− −  = ( ) ( )3 2 4 3 23 3 1 · 3 6 12 10 3x x x x x x x x− + − − = − + − +  

Luego:  

 ( )4 3 2 5 4 3 21 6
( ) 6 12 10 3 4 5 3

5 4
f x x x x x dx x x x x x c= − + − + = − + − + +  

Como (0) 1f =   c = 1; y, por tanto: 5 4 3 21 3
( ) 4 5 3 1

5 2
f x x x x x x= − + − + + . 

 

 

 

 

 

 


