
A4.4.

Elección del equipo de cabecera

UD3
Equipos de cabecera

Equipo de cabecera

El dimensionado del equipo de cabecera empieza con la elección del tipo de sistema de amplificación.

En general siempre es recomendable la utilización de un sistema de amplificación monocanal. Cuando el nivel de señal de los canales de entrada esté ecualizado y el nivel de salida necesario no sea elevado (pocos usuarios) se puede utilizar un sistema de amplificación de banda ancha.

La normativa ICT, con carácter general, limita el uso de cualquier tipo de central amplificadora o amplificador de banda ancha a las edificaciones en las que el número de tomas servidas desde la cabecera sea inferior a 30. Se permitirá el uso de este tipo de equipos en edificaciones con un mayor número de tomas, siempre que los equipos sean capaces de garantizar que, entre canales de la misma banda, la diferencia de nivel a la salida de la cabecera será inferior a 3dB (en los canales de la misma naturaleza). En el caso de que, por las características de la red, fuera necesaria una ecualización, la tolerancia de 3dB se aplicará sobre la misma (sólo para servicios de TV).

Además, la diferencia de nivel, a la salida de la cabecera, entre canales de la misma naturaleza, no será superior a 3 dB.

Una vez elegido el tipo de sistema de amplificación se calcularán los parámetros que lo definen, esto son: el nivel de salida, la ganancia y la figura de ruido.

Nivel de salida

El dato más importante que debe calcularse para definir la cabecera es el nivel mínimo de señal necesario que debe entregar a la red de distribución $(S_{O\ MIN})$ para compensar las pérdidas de la red de distribución.

El reglamento ICT marca como niveles máximos para las bandas 47MHz – 862 MHz un nivel de **113 dBμV** para señales digitales y para la banda FI un nivel de **110 dBμV**.

Conociendo las pérdidas máximas y mínimas (L_{MAX RED} y L_{MIN RED}) de la red de distribución, que corresponden a la toma más desfavorecida y la más favorecida. El nivel de salida se puede calcular de dos formas:

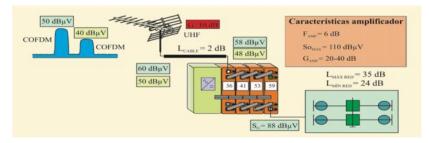
1. Sumando el nivel mínimo necesario en la toma según la normativa $(S_{MIN TOMA})$ con las pérdidas máximas de la red de distribución $(L_{MAX RED})$ y así se obtiene el nivel de salida mínimo:

$$S_{o MIN} > S_{MIN TOMA} + L_{MAX RED}$$

Sumando el nivel máximo necesario en la toma según la normativa ($S_{MAX TOMA}$) con las pérdidas mínimas de la red de distribución ($L_{MAX RED}$) y así se obtiene el nivel de salida mínimo:

El nivel de salida del amplificador (S_o) debe ajustarse en un valor intermedio, teniendo en cuenta de no superar el nivel máximo de salida especificado por el fabricante del amplificador:

$$S_{MIN TOMA} + L_{MAX RED} < S_o < S_{MAX TOMA} + L_{MIN RED}$$


Que también puede ser un nivel promedio:

$$S_o = \frac{S_{oMAX} + S_{oMIN}}{2}$$

2 CM IEEA ICTVE 1

2. La segunda opción es fijar un nivel de $dB\mu V$ en las tomas dentro de los niveles que marca el reglamento de ICT, por ejemplo 60 $dB\mu V$.

Este valor se suma a las pérdidas máximas y mínimas, y se tiene los niveles del amplificador máximos y mínimos, para asegurar que hay alrededor de ese nivel en cada toma.

La normativa específica un nivel de señal comprendido entre 47 dBμV y 70 dBμV para señal de TDT (COFDM-TV) y entre 47 dBμV y 77 dBμV en satélite digital.

A partir del catalogo se elige un sistema de amplificación con un nivel de señal de salida adecuado. Así también quedará definida su ganancia y su figura de ruido.

Ganancia

Para conseguir el nivel de señal que debe suministrar un amplificador (S_0) es necesario que el amplificador amplifique el nivel de señal a su entrada (S_i) . Para conseguir este nivel de salida, la ganancia del amplificador (G_{AMP}) tiene que ser la adecuada, de forma que pueda amplificar el nivel de señal que proviene de la antena:

$$G_{AMP} = S_0 - S_i$$

El nivel de salida de los amplificadores debe ser aproximadamente el mismo para todos los canales, por ello, la ganancia puede variar según el canal donde se haga la amplificación. Por eso, todos los amplificadores suelen disponer de un control para modificar la ganancia un margen determinado, normalmente hasta 20 dB.

Si no hay disponibles en el mercado amplificadores comerciales con la ganancia necesaria, existen diferentes soluciones que se pueden adoptar:

- Utilizar una antena con una ganancia más elevada
- Utilizar un amplificador
- Ajustar el nivel de salida del amplificador más bajo, siempre y cuando se cumpla
 S_{MIN} en las tomas.
- Redimensionar la red de distribución para reducir las pérdidas.

Figura de ruido

Con la elección del amplificador queda fijada la figura de ruido de esta etapa (F_{AMP}). Este parámetro condiciona la C/N de salida del sistema:

$$C/N_0 = C/N_i - F_{FO}$$

Esta aproximación se puede hacer solo si la ganancia del amplificador es elevada respecto a la atenuación de la red.

La figura equivalente de ruido de la instalación (F_{EQ}), en general, dependerá del cable de bajada de la antena (L_{CABLE}) y de la figura de ruido del amplificador (F_{AMP}):

$$F_{FO} = L_{CABLE} + F_{AMP}$$

2 CM IEEA ICTVE 2