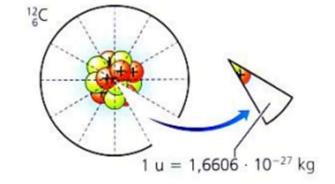
Masas atómicas Mol


Física y Química

Masas atómicas y masas moleculares

 Los átomos son muy pequeños, con masas del orden de 10⁻²⁷ kg. Para trabajar con números sencillos se definió la unidad de masa atómica (u)

Átomo	Masa atómica
С	12 u
Н	1 u
0	16 u
Ca	40 u

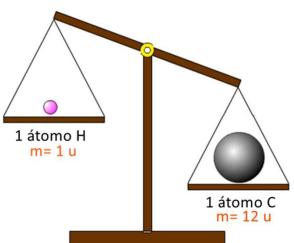
esta unidad es muy pequeña:

1 u = 0,000 000 000 000 000 000 001 660 g es imposible poder medirla en el laboratorio

• Las **moléculas** están formadas por átomos. La masa de una molécula es por tanto la suma de las masas de los átomos que la forman y se expresa en "u"

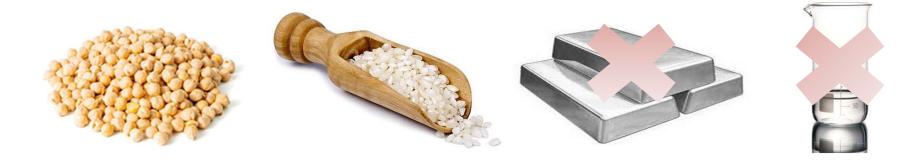
Molécula	Masa molecular
CH_4	12 + 1 · 4 = 16 u
Ca(OH) ₂	40 + (1 +16)· 2= 74 u

Para trabajar en un laboratorio es necesario escoger un número grande de moléculas


Ejercicios

Determina la masa de las siguientes moléculas: Datos masas atómicas (u): H=1; O=16; C=12; N=14; S=32; Cl=35,5; Se=79

- b) C₄H₁₀
- c) $(NH_2)_2CO$
- d) NH₃
- e) $C_{12}H_{22}O_{11}$
- f) O_7Cl_2
- g) H₂Se
- h) $(CH_3)_3N$



La cantidad de sustancia

Precisamente porque los átomos son tan pequeños es imposible contarlos o pesarlos.

Se pueden contar los garbanzos en un puñado, es más latoso pero también se pueden contar los granos de arroz en una medida, pero es imposible contar cuántos átomos de plata hay en un lingote o las moléculas de agua que hay en un vaso.

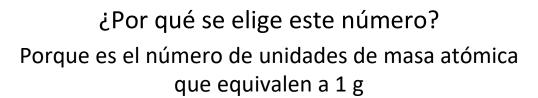
En el laboratorio no podemos contar partículas solo podemos pesar sustancias y medir volúmenes

La **cantidad de sustancia** relaciona las *masas de sustancia* que se pueden medir a escala macroscópica con el *número de partículas* que hay en esa cantidad.

El mol

En una reacción conviene conocer cuántas unidades elementales (átomos, moléculas...) de cada sustancia intervienen en ella. Para eso utilizamos la magnitud llamada cantidad de sustancia cuya unidad en el S.I es **el mol**:

Cantidad de sustancia que contiene $6.02 \cdot 10^{23}$ unidades (átomos, moléculas, iones...) Al número $6.02 \cdot 10^{23}$ se le denomina Número de Avogadro.



El número de Avogadro

Número de Avogadro: $N_A = 6.02 \cdot 10^{23}$

602.300.000.000.000.000.000

1 átomo de C tiene una masa de 12 u

1 mol de C (6,02·10²³ átomos de C) tienen una masa de 12 g

1 átomo de S tiene una masa de 32 u

1 mol de S (6,02·10²³ átomos de S) tienen una masa de 32 g

 ${\bf 1}$ molécula de ${\bf H_2O}$ tiene una masa de ${\bf 18}$ u

➤ 1 mol de H₂O (6,02·10²³ moléculas de H₂O) tienen una masa de 18 g

El mol

Hay la **misma cantidad de unidades**, 12 si es una docena o 6,02·10²³ si es 1 mol, pero tienen **distinta masa**

6,02-10⁴

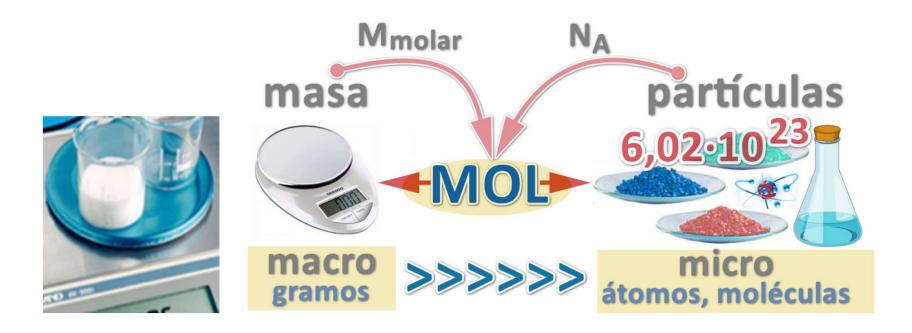
moléculas de H_2O masa = **18 g**

6,02-102

moléculas de etanol masa = 46 g

6,02-102

átomos de azufre masa = **32 g**


6,02-10

átomos de carbono masa = **12** g

Cálculos en mol

El **mol** permite una sencilla conexión entre las masas de sustancias que se pueden medir (escala macroscópica), con el número de partículas que hay en esa cantidad (escala atómica) que es lo que interesa saber desde el punto de vista de las reacciones químicas.

¿Cómo hacer los cálculos?

¿cuál es la masa en g?

0,55 mol de C₂H₆

¿cuántas moléculas?

$$M(C_2H_6) = 12\cdot 2 + 1\cdot 6 = 30$$

$$N_A = 6.02 \cdot 10^{23}$$

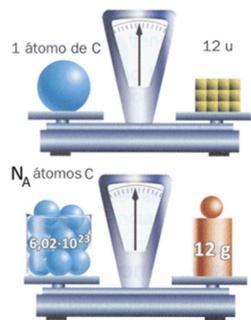
$$0.55 \,\mathrm{mol}\,\mathrm{C_2H_6} \cdot \frac{30 \,\mathrm{g}}{1 \,\mathrm{mol}\,\mathrm{C_2H_6}} = 16.5 \,\mathrm{g}$$

$$0,55 \,\text{mol}\,\text{C}_2\text{H}_6 \cdot \frac{6,02 \cdot 10^{23} \,\text{mol}\,\text{\'e}\text{culas}}{1 \,\text{mol}\,\text{C}_2\text{H}_6} = 3,31 \cdot 10^{23} \,\text{mol}\,\text{\'e}\text{culas}$$

micro átomos, moléculas

Halla los mol y el número de moléculas que hay en un sobre de glucosa $C_6H_{12}O_6$ de 6 g. Datos: masas atómicas (u): C=12; H=1; O=16; N_A = 6,02·10²³

Ejercicios



- Determina los mol que hay en cada una de estas muestras:
 - a) 100 g de sacarosa $C_{12}H_{22}O_{11}$
 - b) 75 g de naftaleno C₁₀H₈
 - c) 40 mL de benceno C_6H_6 (d= 0,75 g/mL) Datos masas atómicas (u): H=1; O=16; C=12
- Determina en qué muestra hay más átomos:
 - a) 278 g de hierro, Fe
 - b) 500 g de yodo, I₂
 - c) 30 g de cobre, Cu

Datos masas atómicas (u): Fe= 55,6; I=127; Cu=63,5; $N_A = 6,02 \cdot 10^{23}$

¿cuántas moléculas y cuántos átomos hay en un vaso que contiene 150 mL de agua H_2O (d= 1 g/mL)

Datos masas atómicas (u): H= 1; O=16; $N_A = 6,02 \cdot 10^{23}$

El n° de moléculas en una gota de agua es aproximadamente 100 mil millones de veces mayor que el n° de personas en la tierra

