Las sustancias químicas

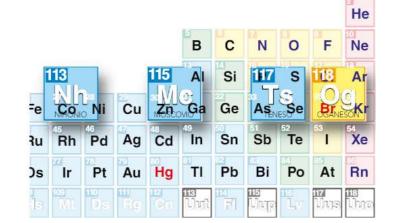
FORMULACIÓN INORGÁNICA
PARTE I

Física y Química

Primeros pasos:

Vamos a aprender a FORMULAR y NOMBRAR compuestos inorgánicos

Hay muchísimos compuestos químicos, por eso es necesario ordenar, clasificar y sistematizar, para que no se nos haga una tarea dura



Por formulación y nomenclatura, entendemos el conjunto de reglas que debemos seguir para escribir la fórmula química de una sustancia pura y nombrarla

¿Qué tenemos que saber?

- Nombres, símbolos y posición de los elementos en la tabla periódica
- Tipos de elementos:
 - Metales
 - No metales
 - Gases nobles

- Concepto de fórmula química: subíndices
- Concepto de enlace entre átomos (recordad lo que hemos visto en clase ¿cómo, porqué y para qué se unen los átomos?)
- Valencias (estados de oxidación). No toda la tabla: grupos 1,2 y 13 al 17, algunos metales de transición, y solo los estados de oxidación más habituales.

¿Qué es el número de oxidación?

Se llama número de oxidación de un átomo *n.o.* en un compuesto, al número de electrones que ha ganado o ha perdido suponiendo que el compuesto fuese iónico

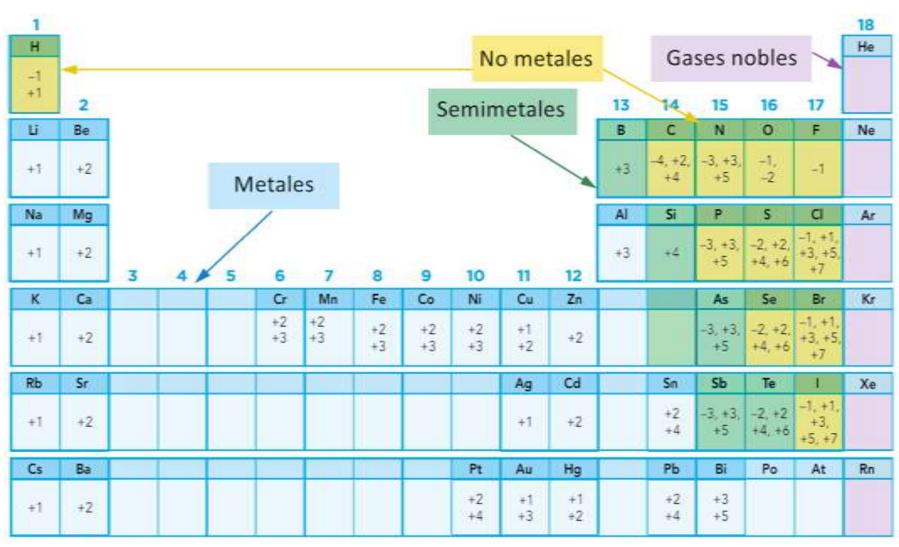
- o Es **positivo**, si el átomo ha perdido electrones
- Es negativo, si el átomo ha ganado electrones

La suma de los números de oxidación de los átomos de un compuesto debe ser cero

Esta es la REGLA de todas las reglas

$$e_{2}^{+3}O_{3}$$

A la izquierda el metal (+)


A la derecha el no metal (-)

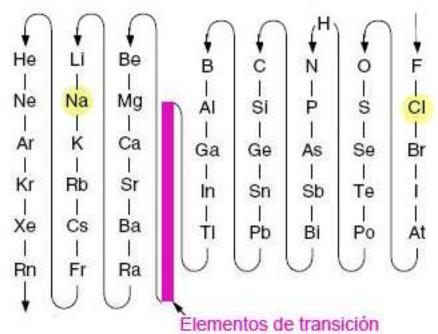
estados de oxidación más habituales

Hay que aprendérselos!!

Reglas generales

Las que dicta la **IUPAC**:

International Union of Pure and Applied Chemistry



Orden de escritura de los elementos en la fórmula: se escribe primero, el último elemento que me encuentro siguiendo el camino de las flechas.

Por ejemplo para escribir:

cloruro de sodio: NaCl

fluoruro de hidrógeno: HF

Sistemas de nomenclatura

Nomenclatura de composición (sistemática): indica la proporción entre los elementos de una especie química

- Con prefijos multiplicadores antepuestos a los nombres de los elementos
- Con el n.o entre paréntesis y en números romanos

Nomenclatura de sustitución: solo en hidruros no metálicos

Nomenclatura tradicional o de nombre común: solo en oxoácidos

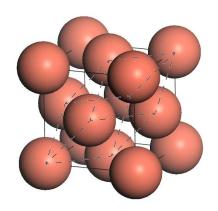
Prefijos multiplicadores	
N.º de átomos	Prefijo
1	mono-
2	di-
3	tri-
4	tetra-
5	penta-
6	hexa-
7	hepta-
8	octa-

En la medida en que el nombre describe a un compuesto de forma inequívoca, el nombre es correcto

Clasificación de las sustancias inorgánicas

Vamos al lio, despacio pero entendiendo todo, todo, todo, desde el principio.

Sustancias simples

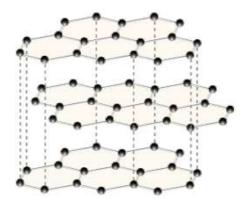


Metales

Como son agrupaciones de un número indefinido de átomos del mismo elemento, tendremos en cuenta que:

- o La fórmula de cualquier metal es su símbolo químico
- Se nombran igual que el elemento

Fe: hierro Ag: plata Na: sodio



cobre: Cu

No metales

- Sustancias atómicas: son los gases nobles y las sustancias elementales que forman cristales como el carbono
 He: helio
 C: carbono
- Sustancias moleculares: en la fórmula aparece símbolo y un subíndice que indica el nº de átomos en la molécula

 N_2 : dinitrógeno O_3 : trioxígeno F_2 : diflúor

grafito: C

Sustancias simples

Iones monoatómicos

Fórmula: Na⁺ Ca²⁺ O²⁻

Cl-

Nombre:

- o **lones positivos:** nombre del elemento seguido del nº de carga entre paréntesis
- lones negativos: nombre del elemento cambiando su terminación por el sufijo «-uro», salvo para el oxígeno y, el número de carga entre paréntesis.

En los aniones, la carga es opcional, pero en los cationes es obligatoria

Fórmula	Nombres
Na ⁺	sodio(1+)
Mg ²⁺	magnesio(2+)
Al ³⁺	aluminio(3+)

Fórmula	Nombres
Cl-	cloruro(1–)
O ²⁻	óxido(2–)
S ²⁻	sulfuro(2-)

A practicar...

Haced los ejercicios primero y luego comprobad con las soluciones, que están al lado

Ejercicios

Libro: pág. 97

Formula y nombra

- 1 Nombra las siguientes sustancias:
 - a) I₂; b) Ne; c) Ca; d) Ag⁺; e) Pt⁴⁺; f) F⁻; g) Se²⁻; h) N³⁻;
- Pormula:
 - a) diflúor
- e) potasio(1+)
- b) tetrafósforo
- f) galio(3+)
- c) octaazufre
- g) ion yoduro

d) cobre

h) carburo(4-)

Compuestos binarios:

Todos tienen dos partes

Óxidos:

Son combinaciones del oxígeno con otro elemento, salvo los halógenos (grupo 17). El oxígeno actúa con *n.o* (-2)

Fórmula: se escribe el símbolo del oxígeno a la derecha y el del otro elemento a la izquierda. Se determinan los subíndices, para que la suma de *n.o* sea cero

+2 -2
FeO
$$= 0$$
 +3 -2
 $= 0$ $= 0$

Nombre:

 Con prefijos multiplicadores: prefijo multiplicador + «óxido» + «de» + prefijo multiplicador + nombre del otro elemento (si es 1, el prefijo «mono-» se omite).

FeO: óxido de hierro Fe_2O_3 : trióxido de dihierro

 Con el n.o: «óxido de» + nombre del elemento que se combina con el oxígeno + su n.o en números romanos entre paréntesis y sin dejar espacio.

FeO: óxido de hierro(II) Fe_2O_3 : óxido de hierro(III)

Óxidos:

Fórmula	Prefijos multiplicadores	Números de oxidación
Li ₂ O	óxido de dilitio	óxido de litio 🤻
PbO	monóxido de plomo	óxido de plomo(II)
PbO ₂	dióxido de plomo	óxido de plomo(IV)
Al ₂ O ₃	trióxido de dialuminio	óxido de aluminio *

$$+6 -2$$
 $S O_3$
 $1 \cdot (+6) + 3 \cdot (-2) = 0$

trióxido de azufre óxido de azufre(VI)

* Cuando el elemento que se combina con O solo tiene un n.o. NO SE ESCRIBE

Si el elemento forma varios óxidos el prefijo mono- puede ponerse para enfatizar

Haluros de oxígeno:

combinaciones del O con los halógenos, elementos del grupo 17. Se escribe el O a la izquierda y el halógeno a la derecha. Se nombran: prefijo multiplicador + nombre del halógeno terminado en «-uro» + «de» prefijo multiplicador + la palabra «oxígeno»

Ejercicio resuelto:

Formula o nombra en cada caso los siguientes compuestos:

a) óxido de estaño(IV)

d) PbO_2

b) trióxido de azufre

e) Co_2O_3

c) dicloruro de heptaoxígeno

- f) Ag₂O
- a) En el óxido de estaño(IV) el n.o. del Sn es +4, de forma que:

- Sn O₂
- b) Trióxido de azufre: teniendo en cuenta que las fórmulas se leen de derecha a izquierda y los prefijos multiplicadores indicados, los subíndices respectivos serán 1 para el S y 3 para el O
- SO₃
- c) En el dicloruro de heptaoxígeno, los prefijos multiplicadores nos indican que en la molécula hay 2 cloros y 7 oxígenos, luego la fórmula será
- O₇ Cl₂
- d) En el PbO_2 , como el O tiene n.o. = -2, el Pb tiene que tener n.o. = +4 para que el compuesto sea eléctricamente neutro. El compuesto se llamará **dióxido de plomo** en la nomenclatura de prefijos multiplicadores y **óxido de plomo(IV)** en la de n.o.

- e) En el Co_2O_3 , como el O tiene n.o. = -2, el Co tiene que tener n.o. = +3 para que el compuesto sea neutro. Se llamará **trióxido de dicobalto** en la nomenclatura de prefijos multiplicadores y **óxido de cobalto(III)** en la de números de oxidación
- f) Ag₂O: como el O tiene n.o. = -2, la Ag tiene que tener n.o. = +1 para que el compuesto sea neutro. Se llamará **óxido de diplata** en la nomenclatura de prefijos multiplicadores y **óxido de plata** en la de n.o

Ejercicios

Libro: pág. 99

Formula y nombra

- Formula o nombra según corresponda los siguientes compuestos:
 - a) Óxido de nitrógeno(V)
 - b) Óxido de berilio
 - c) Óxido de platino(IV)
 - d) Óxido de cesio
 - e) FeO
 - f) SnO₂
 - g) Li₂O
 - h) O_7Cl_2

Mucho ánimo!!!

