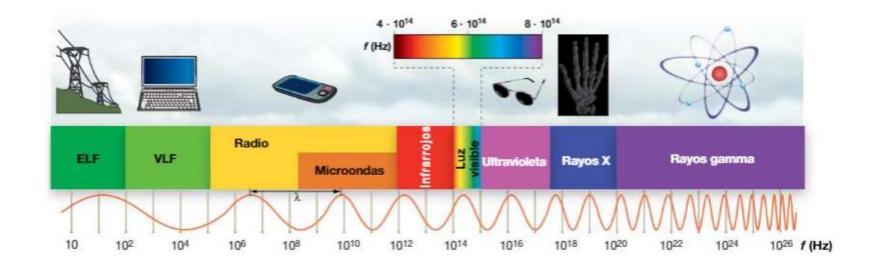
Estructura de la materia

1ª PARTE

Física v Ouímica


La constitución de la materia

¿cómo es la materia por dentro? ¿A qué se debe tal variedad de sustancias?

Desde la Antigüedad, científicos y filósofos han intentado responder a estas preguntas.

- Demócrito (460-370 a.C.): la materia está formada por partículas muy pequeñas: átomos, que en griego significa «indivisibles».
- En la misma época otros filósofos griegos, como Platón y Aristóteles, defendían la teoría contraria, es decir, que cualquier cuerpo podía ser dividido indefinidamente.

Teoría atómica de Dalton

Las ideas de Platón y Aristóteles se aceptaron hasta finales del s. XVIII. El primer científico que volvió a hablar de átomos fue John **Dalton**.

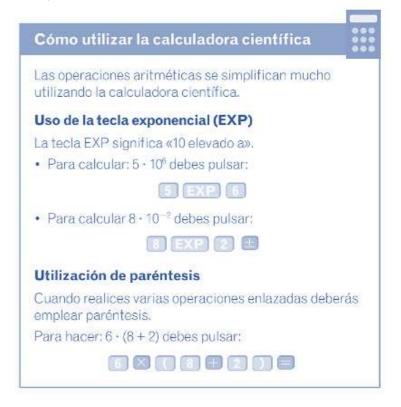
- Todas las sustancias están formadas por partículas muy pequeñas, indivisibles e indestructibles: átomos.
- Los átomos de un elemento son iguales entre sí en masa y propiedades y distintos a los de otro elemento
- Un compuesto químico se forma por la unión de átomos de elementos diferentes en una relación de números sencillos.
- En las reacciones químicas, los átomos ni se crean ni se destruyen, solo se reorganizan

Símbolos de Dalton para algunos elementos químicos

Estructura interna de los átomos

La idea de Dalton, del átomo indivisible, se mantuvo hasta mediados del s. XIX, cuando se suceden varios descubrimientos que evidencian la divisibilidad del átomo:

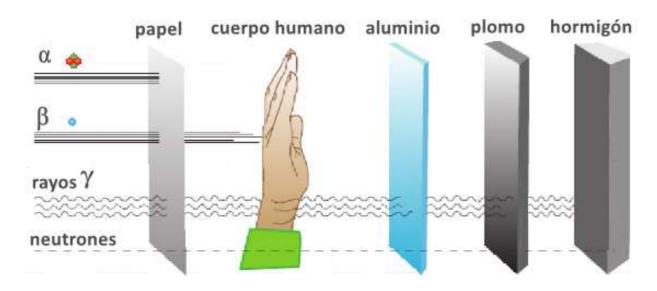
las partículas subatómicas. Los átomos se diferencian unos de otros en el número de partículas que los constituyen.


Partícula	Carga (C)	Masa (kg)
Protón	+1,6 - 10-19	1,673 · 10-27
Neutrón	0	1,675 · 10-27
Electrón	-1,6 · 10 ⁻¹⁹	9,109 - 10-31

- Los rayos X (Röentgen): radiación electromagnética no visible y de muy alta energía, capaces de atravesar materiales de gran espesor:
- La radiactividad (Becquerel): emisión espontánea de radiación que procedía del interior de los átomos, por parte de determinadas sustancias radiactivas.

Los átomos eran más complejos de lo que había supuesto Dalton

Ejercicios

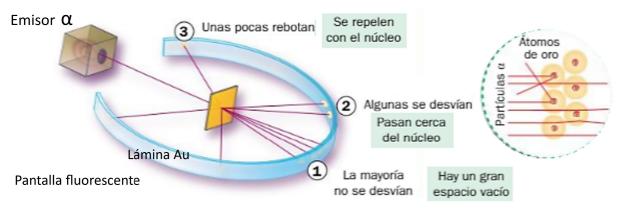

- Subraya en cada caso la palabra correcta:
 - a) Los electrones poseen carga (positiva/negativa)
 - b) La masa del neutrón es similar a la del (protón/electrón)
 - c) El (protón/neutrón) no tiene carga eléctrica
 - d) Los protones poseen carga (positiva/negativa)
- 2 Si los átomos están formados por partículas con carga eléctrica ¿Por qué son neutros? Señala la respuesta correcta:
 - a) Porque contienen neutrones
 - b) Porque tienen el mismo número de protones que de electrones
 - c) Porque contienen el mismo número de protones que de neutrones
- ¿Cuántas veces es mayor la masa del protón que la del electrón?

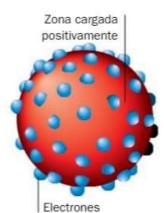
Tipos de emisiones radiactivas

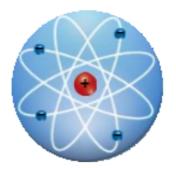
- **Radiación α:** partículas formadas por dos protones y 2 neutrones. Su carga es positiva, se emiten a gran velocidad y tienen poco poder de penetración
- **Radiación** β : formada por electrones. Su carga es negativa y tienen mayor poder de penetración que la radiación α
- Radiación γ: es neutra, es un tipo de radiación electromagnética mucho más energética que los rayos X. Tiene gran poder de penetración

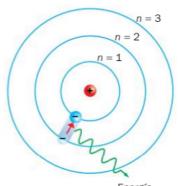
Aplicaciones de los isótopos radiactivos

- Fuente de energía: en las centrales nucleares.
- Investigaciones científicas: datación mediante C-14 de restos arqueológicos, estudios geológicos...
- Medicina: equipos de diagnóstico, trazadores (gammagrafías), esterilización de material quirúrgico, tratamiento de tumores (radioterapia).
- Industria: radiografía de piezas y soldaduras (aviones), mediciones precisas de espesor y nivel, seguimiento de fluidos en tuberías o cauces subterráneos, reacciones químicas (plásticos, tejidos), irradiación de alimentos...

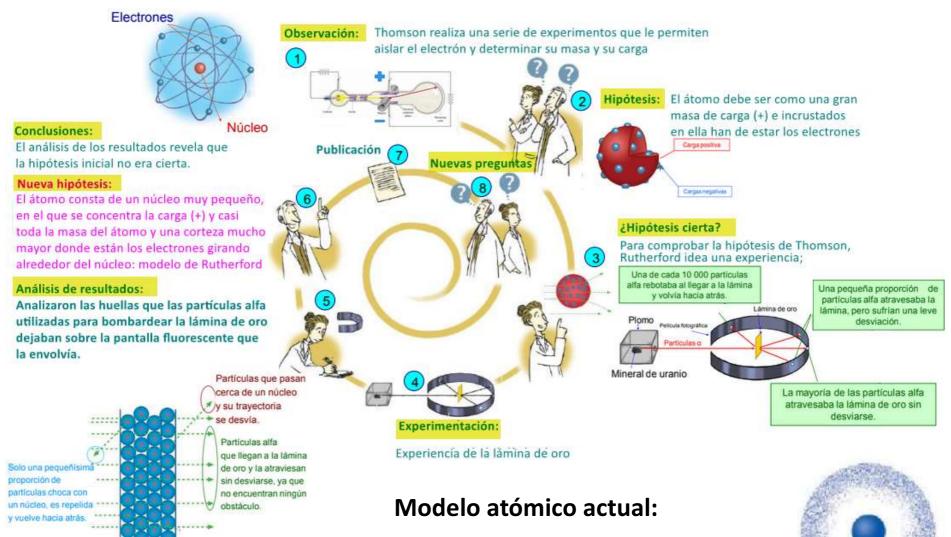

Las actividades relacionadas con los isótopos radiactivos generan **residuos** muy peligrosos para la salud humana y muy duraderos. Algunos siguen emitiendo radiación durante miles de años.




Modelos atómicos


- Modelo de Thomson: átomo es una esfera cargada positivamente en la que se hallan incrustados los electrones en nº suficiente para compensar la carga positiva, con lo que el átomo es neutro.
- Modelo de Rutherford: el átomo consta de un pequeño núcleo central cargado positivamente donde se hallan los protones y que contiene casi toda la masa, y una parte exterior (corteza) donde los electrones giran en órbitas a cualquier distancia del núcleo.

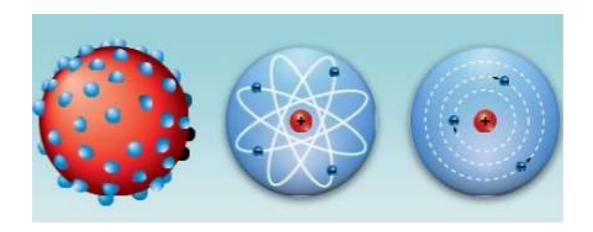
Modelo de Bohr: la corteza está dividida en capas; los electrones giran en órbitas definidas y estables sin absorber ni emitir energía, a menos que salte de una órbita a otra.



Método científico y modelos atómicos

Los **orbitales** son regiones del espacio que rodea al núcleo en las que hay una gran probabilidad de encontrar al electrón

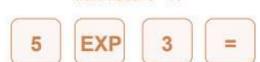
Ejercicios


- 4 Busca información sobre qué es el período de semidesintegración de un isótopo radiactivo y razona por qué es importante que los isótopos radiactivos usados en medicina tengan un valor de esta magnitud bajo o muy bajo.
- 6 Contesta a las siguientes preguntas:
 - a) ¿qué diferencias hay entre la radiación α , β y γ ?
 - b) ¿de dónde proceden los residuos radiactivos? ¿qué procedimientos se siguen en la actualidad para almacenarlos?
- 6 ¿qué afirmaciones son verdaderas y cuáles falsas? Corrige estas últimas
 - a) Modelo de Thomson: la mayor parte de la masa del átomo corresponde a la carga negativa, donde se encuentran incrustados los protones.
 - **b)** Modelo de Rutherford: el átomo tiene un núcleo central donde está la carga positiva y negativa.
 - c) Modelo de Bohr: la corteza del átomo está formada por diferentes capas. En ellas se localizan los electrones.

Comprende, piensa, investiga...

Ej. del libro de texto: 14 y 16 (pág. 59)

Trabaja con lo aprendido


Ej. del libro de texto: 9, 10 (pág. 68) 13 (pág. 69)

La notación científica y la calculadora:

Uso de la tecla exponencial (EXP). La tecla EXP significa "10 elevado a "

Para hacer 5 · 103

