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Análisis – Parte I

Límite de una función en un punto:
La idea intuitiva de límite consiste en que cuánto más cercano sea el valor x al punto a, más 
próxima va a estar la imagen, f(x), al valor límite L. Para formalizar este concepto, en matemáticas 
se utiliza la siguiente definición:

Definición

Sea f una función definida en un intervalo abierto que contenga al punto p, se dice que L∈ℜ  es el 
límite de la función en p:

lím
x → a

f ( x)=L   { ∀ ε> 0 ,∃ δ> 0 / |x−a|<δ  | f ( x )−L|<ε }

Dicho de otra manera, para cualquier entorno de L, E L=( L−ε , L+ ε ) podemos encontrar un 
entorno de a, Ea =(a−δ , a+ δ) de tal modo que f ( Ea )⊂E L

También es posible formalizar el concepto de límite por la izquierda incorporando en la definición 
la restricción a valores menores que a:

lím
x→a−

f ( x)=L⇔{∀ε>0 ,∃δ>0 / {|x−a |<δ ∧x<a } ⇒ | f (x )−L|<ε}  

y lo mismo por la derecha

lím
x→a+

f (x)=L⇔ {∀ε>0 ,∃δ>0 / {|x−a |<δ ∧x>a} ⇒ | f (x)−L|<ε}  

Límite de una función el en infinito

Definición

Decimos que L∈ℜ  es el límite de la función f cuando x tiende a infinito, si se cumple:

lím
x → ∞

f ( x )= L⇔ {∀ ε>0 ,∃ k ∈ℜ ∕ x> k ⇒ | f ( x )− L|<ε}  

es decir, para estar suficientemente cerca del límite solo hay que elegir un x suficientemente grande.

Análogamente se define el límite cuando x tiende a menos infinito:

lím
x →−∞

f ( x )= L⇔ {∀ ε>0 , ∃ k ∈ℜ ∕ x <k ⇒ | f ( x )− L|<ε}  

Función Continua en un punto

Definición

Se dice que la función f es continua en el punto x0 , si se cumplen estas tres condiciones:

∃ f ( x0 ) , ∃ lím
x → x0

f (x)  y lím
x → x0

f ( x)= f ( x0)

En la práctica, hay que comprobar lím
x→ x0

−
f (x)= lím

x→x0
+
f (x)=f (x0)
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Discontinuidades

Si ∃ lím
x → x0

f (x) , pero ∄ f ( x0 ) o bien lím
x → x0

f ( x)≠ f ( x0) , se dice que la discontinuidad es 

evitable.

 

f (x)={x2 si x≠0
2 si x=0

(discontinuidad evitable en x=0)

Mientras que si ∄ lim
x → x0

f ( x )  o este es infinito, decimos que la discontinuidad es inevitable.

 

f (x)={x2 si x≤2
x si x>2

(discontinuidad inevitable en x=2)

f (x)= x
2−3 x+2
x2+x−2

(discontinuidad inevitable en x=-2 y 
discontinuidad evitable en x=1)

3



Análisis – Parte I

Teorema de Bolzano
Si f  es una función continua en el intervalo [ a , b ]  y toma valores de distinto signo en los 
extremos del intervalo, es decir f ( a ) · f (b)< 0  entonces existe por lo menos un punto
c∈(a , b ) tal que f ( c )=0

f continua en [ a , b ]
f (a ) · f (b )<0 }⇒ {∃ c∈(a , b ) ∕ f ( c )=0 }  

Interpretación Geométrica:

 
Si f  es una función continua en un intervalo cerrado [ a , b ]  tal que f ( a )  y f (b )  tengan 
distinto signo, entonces la gráfica de la función corta al eje X al menos en un punto del intervalo
(a , b )

Teorema de los valores intermedios (teorema de Darboux)

Si f  es continua en [ a , b ] , entonces toma todos los valores intermedios entre f ( a )  y f (b )

Teorema de Weierstrass

Si f  es continua en [ a , b ] , entonces f tiene máximo y mínimo absolutos en ese intervalo

f continua en [a , b ]⇒∃ c , d ∈[ a , b ] ∕∀ x∈[ a , b ] , f ( c )≤ f ( x )≤ f ( d )  
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Derivada de una función en un punto
Se define la derivada de una función en un punto mediante el siguiente límite

f ' ( x0)= lím
h → 0

f ( x0+ h)− f ( x0 )
h

 o equivalentemente f ' ( x0)= lím
x → x0

f ( x )− f ( x0 )
x− x0

Interpretación geométrica de la derivada

El cociente 
f ( x0 + h )− f ( x0)

h
 coincide con el valor de la pendiente de la recta que corta a la 

gráfica en los puntos ( x0, f ( x0))  y ( x0+ h , f ( x0+ h) ) . A medida que h se aproxima a 0, los dos
puntos se juntan y la recta secante se aproxima cada vez más a la tangente. Así pues el límite de

f ( x0 + h )− f ( x0)
h

 será la pendiente de la recta tangente a la gráfica de la función en el punto

( x0, f ( x0))

                    

Continuidad de las funciones derivables

Si ∃ f ' ( x0 )  entonces f  es continua en x0

El razonamiento consiste en : { f continua en x0} { lím
x → x0

f ( x )= f ( x0 )}
y como

f ( x )= f ( x0)+
f ( x )− f ( x0 )

x− x0

· ( x− x0)

entonces 

lím
x → x0

f ( x )= f ( x0)+ f ' ( x0) · 0= f ( x0 )
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Operaciones con derivadas

Si f y g son funciones derivables en x0 , entonces se cumple:

1. ( f + g ) ' ( x0)= f ' ( x0)+ g ' ( x0 )  

2. ( f −g ) ' ( x0 )= f ' ( x0 )−g ' ( x0)  

3. (k · f ) ' ( x0)= k · f ' ( x0 ) k ∈ℜ  

4. ( f · g ) ' ( x0)= f ' ( x0) · g ( x0 )+ f ( x0 ) · g ' ( x0 )  

5. ( f / g ) ' ( x0)=
f ' ( x0) · g ( x0)− f ( x0) · g ' ( x0)

g ( x0)
2  siempre que g ( x0)≠ 0

Regla de la cadena

Si la función f  es derivable en x0  y la función g  lo es en f ( x0 )  entonces la composición de 
funciones g ∘ f  también es derivable en x0  de tal forma que:

( g ∘ f ) ' ( x0)=g ' ( f ( x0 )) · f ' ( x0 )  

Función derivada

Definición

Se conoce como función derivada f '  a la función que asocia a cada punto x  el valor de la 
derivada de la función f en x

Tabla de derivadas

A continuación se muestran las derivadas para las funciones elementales:

f ( x )= xn ⇒ f ' ( x )=n · x n−1 f ( x )= n√ x ⇒ f ' ( x )= 1

n ·
n√ xn−1

f ( x )= ex ⇒ f ' ( x )= ex f ( x )= ln x ⇒ f ' ( x )= 1
x

f ( x )=a x ⇒ f ' ( x )=ax · ln a ; a∈ℜ f ( x )= loga x ⇒ f ' ( x )= 1
x · ln a

; a∈ℜ

f ( x )= sen x ⇒ f ' ( x )= cos x f ( x )=arcsen x ⇒ f ' ( x )= 1

√1− x2

f ( x )= cos x ⇒ f ' ( x )=−sen x f ( x )= arccos x ⇒ f ' ( x )= −1

√1− x2

f ( x )= tan x⇒ f ' ( x )= 1

cos2 x
=1+ tan2 x f ( x )= arctan x ⇒ f ' ( x )= 1

1+ x2
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Crecimiento

Definición

Decimos que una función es creciente en un punto x0 , si existe un entorno de x0 ( x0−δ , x0+ δ)  
en el que se cumplen las siguientes condiciones

∀ x∈( x0−ε , x0+ε) , {x< x0⇒ f ( x)< f ( x0 )}∧{x0< x⇒ f ( x0 )< f ( x)}  

f creciente en x0 f decreciente en x0

Del mismo modo definimos una función decreciente en x0

∀ x∈( x0−ε , x0+ε) , {x< x0⇒ f ( x)> f ( x0 )}∧{x0< x⇒ f ( x0 )> f ( x)}

Relación entre crecimiento y derivada

f creciente en x0 ⇒ f ' ( x0)≥0  

f decreciente en x0 ⇒ f ' ( x0 )≤0  

f ' ( x0)> 0 ⇒ f creciente en x0  

f ' ( x0)< 0 ⇒ f decreciente en x0

Observaci  ón  :  

Un ejemplo de función creciente en un punto cuya derivada vale cero es f ( x )= x3  ,cuando x =0

Derivada segunda y concavidad

Derivada segunda

La derivada segunda de una función f  en x0  se define como la derivada de la función derivada

f '  en x0 , es decir lím
x → x0

f ' ( x )− f ' ( x0 )
x− x0

Nótese que para que exista la derivada segunda en x0 , f debe ser derivable en un entorno de x0
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Concavidad y convexidad

Una función se dice que es cóncava positiva o convexa en un intervalo (a , b )  si para todo par de 
números x , y ∈( a , b )  el segmento que une los puntos ( x , f ( x ))  e ( y , f ( y ))  está por encima
de la gráfica de la función.

   

De la misma manera, una función se dice que es cóncava negativa o cóncava en un intervalo
(a , b )  si para todo par de números x , y ∈( a , b )  el segmento que une los puntos ( x , f ( x ))  e
( y , f ( y ))  está por debajo de la gráfica de la función.

Diremos que la función f  es convexa en  x0 si lo es en un entorno de x0

f convexa en x0 : ∃ δ> 0 / f es convexa en ( x0−δ , x0+ δ)

Del mismo modo se define una función cóncava en x0

f cóncava en x0 :  ∃ δ> 0 / f es cóncava en ( x0−δ , x0 + δ)

Puntos de inflexión

Se conocen como puntos de inflexión aquellos donde la función cambia de concavidad (de cóncava 
a convexa o viceversa) 

Relación entre derivada segunda y concavidad

Si existe derivada segunda en x0 , entonces:

f convexa en x0⇒ f ״ ( x0)≥0    f ״ ( x0 )> 0⇒ f convexa en x0  

f cóncava en x0⇒ f ״ ( x0 )≤0  f ״ ( x0)< 0⇒ f cóncava en x0  
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Máximos y mínimos relativos

Definición

f tiene un máximo relativo en x0 :  ∃ δ> 0 / ∀ x ∈( x0−δ , x0 + δ ) , f ( x0)> f ( x )  

f tiene un mínimo relativo en x0 :  ∃ δ> 0 / ∀ x ∈( x0−δ , x0+ δ) , f ( x0)< f ( x )

Relación entre extremos relativos y derivada

Si f  es derivable en x0  entonces

f tiene un máximo relativo en x0 ⇒ f ' ( x0)=0  

f tiene un mínimo relativo en x0 ⇒ f ' ( x0 )=0

Demostración

Utilizando el método de reducción al absurdo:

Suponemos que f  tiene un máximo relativo en x0  pero f ' ( x0)≠ 0 , entonces o bien
f ' ( x0)> 0  o bien f ' ( x0)< 0 , lo cual implicaría, en el primer caso, que f es creciente o que f es 

decreciente en el segundo y por tanto no puede haber máximo en x0 . Como esto es una 
contradicción, la única opción es que f ' ( x0)=0

Búsqueda de extremos relativos

En una función derivable, la búsqueda de extremos relativos se basa en el estudio de aquellos 
puntos donde la derivada vale cero, conocidos como puntos críticos
(x0 punto crítico⇔ f '(x0)=0)

Método 1: Estudiar el signo de la derivada

Si f es una función continua, entonces en los puntos donde la derivada cambie de signo habrá un 
máximo o un mínimo relativo. Esto se justifica debido a la relación entre derivada y crecimiento.

   

Hay que observar que en este método no es necesario que f sea derivable en el extremo, aunque sí 
es necesario que sea continua, por ejemplo f ( x )=∣x∣  no es derivable en el 0

Método 2: Ceros de la derivada y signo de la derivada segunda

Este método se basa que en los extremos relativos la derivada (si la hay) vale cero y además la 
función es cóncava en los máximos y convexa en los mínimos, por tanto:

f ' ( x0)=0

f ״ ( x0)< 0}⇒ f tiene un máximo en x0  
f ' ( x0)=0

f ״ ( x0)> 0}⇒ f tiene un mínimo en x0  
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Observación: si resulta que f ״ ( x0 )=0  entonces podemos calcular las derivadas sucesivas en x0 ,
siendo  n el grado de la primera derivada distinta de cero
f ' ( x0)=0, f ״ ( x0)=0, . . . f n−1 ) ( x0)=0 , f n ) ( x0)≠ 0

Entonces:

• Si n es impar f  tiene un punto de inflexión en x0

• Si n es par y f n ) ( x0)>0  entonces f  tiene un mínimo en x0

• Si n es par y f n ) ( x0)<0  entonces f  tiene un máximo en x0

Por ejemplo, x3  tiene un punto de inflexión en 0, mientras que x4  tiene un mínimo en 0

Teorema de Rolle
Si f es una función continua en el intervalo [a , b ] , derivable en (a , b ) y además f ( a )= f (b ) , 
entonces existe, al menos, un valor c∈(a , b )  en el que la derivada vale cero, f ' ( c )=0

f continua en [a , b ]
f derivable en (a , b)

f ( a )= f (b ) }⇒∃ c∈(a , b) / f ' ( c )=0  

Demostración

Como f es continua en [a , b ] , f tiene que alcanzar máximo y un mínimo y mínimo absoluto para 
algún valor del intervalo [a , b ] , llamémosles “c” al valor donde alcanza el mínimo y “d” al 
máximo.

Existen dos opciones:

• c ó d están en el interior del intervalo. En este caso el extremo además de ser absoluto 
también será relativo y por tanto su derivada valdrá cero.

• c y d están en los extremos del intervalo, es decir c=a y d=b o viceversa. En este caso, como
f ( a )= f (b ) , tendríamos que f ( c )= f (d ) , es decir el máximo absoluto toma el mismo

valor que el mínimo absoluto. Esto sólo puede ocurrir si la función es constante, y por tanto 
la derivada valdría cero en todo punto del intervalo (a , b )

Interpretación Geométrica

Si f es una función continua en el intervalo [a , b ] , derivable en (a , b ) y además f ( a )= f (b ) , 
entonces existe, al menos, un valor c∈(a , b )  tal que la tangente a la gráfica en el punto
(c , f ( c ))  sea paralela al eje X
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Teorema del valor medio del cálculo diferencial
f continua en [ a , b ]
f derivable en ( a , b )}⇒ ∃ c∈(a , b ) / f ' (c )=

f (b )− f ( a )
b−a

Interpretación geométrica

La expresión 
f (b )− f (a )

b−a
 es la pendiente del segmento que une los puntos (a , f (a ))  con

(b , f (b )) . Por tanto la interpretación geométrica del valor medio consiste en que si tenemos una 
función continua en [a , b ]  y derivable en (a , b ) , entonces existirá un punto c∈(a , b ) , de tal 
forma que la tangente a la gráfica en el punto (c , f ( c ))  será paralela al segmento que une los 
puntos (a , f (a ))  con (b , f (b ))

 

Regla de  L' Hôpital
Sean f  y g  dos funciones derivables en un entorno de a , Ea , tal que:

lím
x → a

f ( x )= lím
x → a

g ( x )=0  , g ( x )≠ 0 ∀ x ∈Ea  y  existe lím
x → a

f ' ( x )
g ' ( x )

, entonces se cumple

lím
x → a

f ( x )
g ( x )

= lím
x → a

f ' ( x )
g ' ( x )

 

f y g derivables en Ea

lím
x → a

f ( x )= lím
x → a

g ( x )=0

g ( x )≠ 0∀ x∈ Ea

∃ lím
x → a

f ' ( x )
g ' ( x )

}⇒ lím
x → a

f ( x )
g ( x )

= lím
x → a

f ' ( x )
g ' ( x )
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Observaciones

• La regla de L' Hôpital es una potente herramienta para resolver indeterminaciones del tipo 
0/0. No obstante también sirve para resolver otro tipo de indeterminaciones, como ∞/∞ :

∞
∞ = lím

x → a

f ( x )
g ( x )

= lím
x → a

1
g ( x )

1
f ( x )

= 0
0

 entonces 

lím
x → a

f ( x )
g ( x )

= lím
x → a

1
g ( x )

1
f ( x )

= lím
x → a

−g ' ( x )
g2 ( x )

− f ' ( x )
f 2 ( x )

= lím
x → a

g ' ( x )
f ' ( x )

·
f 2 ( x )
g2 ( x )

=  

= lím
x → a

g ' ( x )
f ' ( x )

·
( f ' )2 ( x )
( g ' )2 ( x )

= lím
x → a

f ' ( x )
g ' ( x )

Así pues, la regla de L' Hôpital también puede aplicarse a indeterminaciones ∞/∞

• Aunque la regla de L' Hôpital que hemos visto es valida en límites del tipo x → a ; a∈ℜ , 
la demostración puede adaptarse para  límites del tipo x →±∞  así como a límites laterales.
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