Tema 7 – Ejercicios

- 1. Calcula la tasa de variación media de la función f(x)=2x+7 en los intervalos [1,2] y
- 2. Calcula la tasa de variación media de la función $f(x) = \frac{1}{x^2 1}$ en los intervalos [0,0.5]
 - , [0,0.25] y [0,0.1]
- 3. Para la función $f(x)=3x^2+2$, calcula $\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h}$
- 4. Calcula la función derivada de las siguientes funciones:
 - a) $f(x)=5x^4-3x^2+x-7$
 - b) $f(x) = \frac{x^2 3x + 1}{2x^3 + 2x}$
 - c) $\frac{x^2-3}{x^2-1} \frac{x-3}{x+2}$

- e) $f(x) = \sqrt{3x^2 + x} + \frac{x-1}{x+1}$
- f) $f(x) = \sqrt{x} \cdot (x^2 2x)$ g) $f(x) = \sqrt[3]{x^2 2x}$ h) $f(x) = \frac{\sqrt{2x^2 3}}{3x + 1}$

- 5. Calcula la ecuación de la recta tangente a la gráfica de las siguientes funciones:
 - a) $f(x) = \sqrt{3x+1}$ cuando x=4
 - b) $f(x)=3x^4-8x^3-30x^2+72x-18$ cuando x=3
 - c) $f(x) = \frac{1}{x+1}$ cuando x=4
- 6. Calcula la ecuación de la función f(x), sabiendo que es un polinomio de grado 2 y que f'(1)=1 , f'(0)=0 y f(0)=2
- 7. Calcula la ecuación de la función f(x), sabiendo que es un polinomio de grado 3 y que f(1)=2 , f'(1)=1 , f(2)=5 y f'(2)=7
- 8. Dada la función $f(x) = \begin{cases} 2x-4 & x < 2 \\ x^2-x-2 & x \ge 2 \end{cases}$, ¿es f continua?, ¿existe derivada en x=2?.

Calcula la función derivada de f e indica su dominio.

- 9. ¿Es f(x)=|x| una función derivable en x=0? Representa las gráficas de f y f '
- 10. Calcula las funciones derivadas de:
 - a) $f(x) = sen(x^2 2x)$
 - b) $f(x) = \tan(\sqrt{x+1})$
 - c) $f(x) = \cos^2 x + \ln(x^2 4)$
 - d) $f(x) = \cos(2x) \cdot 4^x$
 - e) $f(x) = \frac{\sqrt[4]{x^3}}{2x^3}$
 - f) $f(x) = \ln(2x \cdot \tan x)$
 - g) $f(x) = \log_2 x^2 \sec^2(\sqrt{2x-1})$
- k) $f(x) = \frac{(x^3 2x^2 + 2)^3}{(2x + 1)^2}$

j) $f(x) = \frac{\sqrt[3]{x^2 + 1}}{t\sigma 3x}$

h) $f(x)=e^{-x^2}$ arctan(2x)

i) $f(x)=2^x \cdot \cos^2(2x+1)$

1) $f(x) = \frac{\arccos(x^2 + x)}{\log(3x + 2)}$

- 11. Calcula la función derivada de:
 - a) $2^{x} \cdot \sqrt[4]{x^2 1}$

b) $\frac{sen(x^2+1)}{x \cdot \log x}$

c)
$$\tan \left(\ln \left(\sqrt{2x-1}\right)\right)$$

=) $7^{2x \cdot \cos}$

d)
$$\arctan(2x^2 + x)$$

f) $2x^{x+}$

12. Estudia los intervalos de crecimiento de las siguientes funciones e identifica los máximos y mínimos relativos:

a)
$$f(x)=3x^2-2x+1$$

e) $f(x) = \frac{x-1}{x+1}$

b)
$$f(x)=2x^3-9x^2-12x+7$$

c)
$$f(x)=3x^4-8x^3-30x^2+72x-11$$

f) $f(x) = \frac{x+1}{x^2-5x+6}$

d)
$$f(x)=4x^5-\frac{35}{2}x^4+20x^3+5x^2-20x-1$$

g) $f(x) = \frac{x^2 + x - 2}{x^2 - x - 2}$

h)
$$f(x)=2e^{-x}\cdot(x+1)$$

- 13. Dada la función $f(x)=3x^4-8x^3-30x^2+72x-11$, calcula los máximos y mínimos absolutos en los intervalos [-3,-1] y [0,2]
- 14. Estudia la curvatura de las siguientes funciones, indicando los puntos de inflexión:

a)
$$f(x)=4x^3+7x^2+4x-11$$

b)
$$f(x) = \frac{x^4}{6} - \frac{4}{3}x^3 + 4x^2 - 7x + 5$$

c)
$$f(x)=x^4+2x^3-12x^2+3x-1$$

d)
$$f(x) = \frac{x+1}{x+2}$$

15. Calcula los valores de a y b para que la función $f(x) = \begin{cases} ax^2 + bx & si \ x \le 1 \\ \frac{2 \ln x + 2}{x^2} & si \ x > 1 \end{cases}$ sea

derivable en x=1

- 16. Calcula la ecuación de la recta tangente a la gráfica de $f(x)=2x^3-6x^2+1$ en su punto de inflexión.
- 17. Dibuja la gráfica de las siguientes funciones estudiando: dominio, simetrías, puntos de corte con los ejes, asíntotas, máximos y mínimos relativos, puntos de inflexión e intervalos de concavidad.

a)
$$f(x)=x^4-x^2+1$$

c)
$$f(x)=3x^3-2x$$

b)
$$f(x) = \frac{2x^2}{x-1}$$

d)
$$f(x) = \frac{x^2 + 3x}{x + 1}$$

- 18. Calcula los extremos relativos de la función x^4-8x^2+1 . Calcula también el máximo absoluto y el mínimo absoluto de esta función en el intervalo [-3,3,]
- 19. Calcula los valores de a y b para que la función $a \cdot x^2 + b \cdot x \cdot \ln x$ tenga un punto de inflexión en el punto (1,2)