Tema 6 – Límites y continuidad

Concepto de límite

Límite de una función cuando x tiende a infinito

Decimos que $\lim_{x\to +\infty} f(x)=k$ si cuanto más grande sea el valor de x, entonces más cerca estará f(x) de k.

Ejemplo:

$$\lim_{x \to +\infty} \frac{1}{x} = 0$$
 ya que al hacer una tabla de valores

X	10	100	1000	10000
f(x)	0,1	0,01	0,001	0,0001

Del mismo modo podemos hablar del límite en menos infinito

$$\lim_{x \to -\infty} \frac{2x}{1-x} = -2$$

X	-10	-100	-1000	-10000
f(x)	-1,81818	-1,9802	-1,9980	-1,9998

Límite de una función cuando x tiende a un punto "c".

Decimos que $\lim_{x \to c} f(x) = k$ si cuanto más cerca esté x de c, entonces más cerca ha de estar f(x) de k.

Ejemplo:

 $\lim_{x\to 2} x^2 + 3 = 7$ ya que al hacer una tabla de valores, observamos que si x se acerca a 2, su imagen se acerca a 7.

X	1,9	1,99	1,999	1,999
f(x)	6,61	6,9601	6,996001	6,996001

Límites laterales

Al estudiar el límite en un punto "c" es conveniente hablar de límites laterales. Así pues, hablaremos de límite por la izquierda al caso en que x toma valores más pequeños que "c", mientras que el límite por la derecha estudiará el caso en que x tome valores mayores que "c"

Ejemplos:

Decimos que $\lim_{x\to 0^-} \frac{1}{x} = -\infty$ ya que la tabla de valores sale

X	-0,1	-0,01	-0,001	-0,0001
f(x)	-10	-100	-1000	-10000

mientras que $\lim_{x\to 0^+} \frac{1}{x} = +\infty$

X	0,1	0,01	0,001	0,0001
f(x)	10	100	1000	10000

Para que exista el límite, **es necesario que los límites laterales coincidan** (en el ejemplo anterior, la función $f(x) = \frac{1}{x}$ no tiene límite cuando x tiende a cero)

Función continua en un punto

Decimos que f(x) es continua en el punto "c" si se cumple:

$$\lim_{x \to c^{-}} f(x) = \lim_{x \to c^{+}} f(x) = f(c)$$

Ejemplos

La función $f(x)=x^2+3$ es continua en x=2 ya que $\lim_{x\to 2^-} f(x)=7$, $\lim_{x\to 2^+} f(x)=7$ y f(2)=7

X	1,9	1,99	1,999	1,999
f(x)	6,61	6,9601	6,996001	6,996001

X	2,1	2,01	2,001	2,0001
f(x)	7,41	7,0401	7,004001	7,00040001

La función $f(x) = \frac{1}{x^2}$ no es continua en x=0 ya que $\lim_{x \to 0^-} f(x) = +\infty$ $\lim_{x \to 0^+} f(x) = +\infty$ pero no existe f(0)

X	-0,1	-0,01	-0,001
f(x)	100	10000	1000000

X	0,1	0,01	0,001
f(x)	100	10000	1000000

Continuidad en funciones definidas a trozos

Un caso especial en el estudio de la continuidad lo constituyen las funciones definidas a trozos. Por ejemplo, la función

$$f(x) = \begin{cases} x+2 & six \le 1\\ x^2 & six > 1 \end{cases}$$

Esta función sabemos que es continua en el intervalo $(-\infty,1)$ ya que coincide con x+2, la cual es continua (las funciones polinómicas son continuas en todo \mathbb{R}).

Ocurre lo mismo en el intervalo $(1,+\infty)$ (es continua por coincidir con x^2 , polinómica).

Ahora bien, en el punto x=1, tendremos que ver si esta función es continua comprobando la definición de continuidad: $\lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) = f(1)$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} x + 2 = 1 + 2 = 3$$

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} x^{2} = 1^{2} = 1$$

$$f(1) = 1 + 2 = 3$$

$$\Rightarrow la función no es continua en x = 1$$

Resolución de indeterminaciones

En muchos casos podemos calcular el valor de un límite sustituyendo en la expresión, por ejemplo $\lim_{x\to 2} x^2 + 1 = 2^2 + 1 = 5$

En otras ocasiones al sustituir en la expresión obtenemos operaciones que no tienen sentido como

$$\lim_{x \to +\infty} \frac{2x^2 + 1}{x^2 + x}$$

Algunos límites que involucran el infinito tienen resultado conocido, como por ejemplo:

$$\begin{array}{l}
\infty \cdot \infty = \infty \\
\infty + \infty = \infty \\
\infty + k = \infty; k \in \mathbb{R} \\
\frac{a}{\infty} = 0; a \in \mathbb{R} \\
\infty \cdot k = \pm \infty \text{ (según el signo de k)} \\
a^{\infty} = \begin{cases}
+\infty & \text{si } a > 1 \\
0 & \text{si } 0 < a < 1
\end{cases}$$

Otros, por el contrario, no tienen un valor conocido a priori, sino que han de ser calculados con más detalle. Ejemplos de estos casos son las indeterminaciones:

$$\infty - \infty$$
, $\frac{\infty}{\infty}$, $1^{+\infty}$, $\infty \cdot 0$, $\frac{0}{0}$ ó $\frac{k}{0}$; $k \in \Re$

Límites en polinomios

Los polinomios tan solo presentan indeterminaciones en $\pm \infty$ (el resto de límites se pueden calcular sustituyendo).

En estos casos para calcular el límite tan solo se tendrá en cuenta el término de mayor grado

$$\lim_{x \to +\infty} x^3 - x^2 + 2x - 1 = \lim_{x \to \infty} x^3 = (-\infty)^3 = +\infty$$

$$\lim_{x \to -\infty} x^3 - x^2 + 2x - 1 = \lim_{x \to -\infty} x^3 = (-\infty)^3 = -\infty$$

Límites en funciones racionales

Para las indeterminaciones en $\pm \infty$ se tendrán en cuenta los términos de mayor grado, tanto en el numerador como en el denominador.

$$\lim_{x \to +\infty} \frac{3x^3 - 2x^2 + 2x - 1}{2x^3 - x + 1} = \lim_{x \to +\infty} \frac{3x^3}{2x^3} = \frac{3}{2}$$

$$\lim_{x \to -\infty} \frac{3x^4 + x^2}{x^3 - x + 1} = \lim_{x \to +\infty} \frac{3x^4}{x^3} = \lim_{x \to +\infty} 3x = 3 \cdot (-\infty) = -\infty$$

$$\lim_{x \to +\infty} \frac{2x^2 + 2x - 1}{2x^3 - x + 1} = \lim_{x \to +\infty} \frac{2x^2}{2x^3} = \lim_{x \to +\infty} \frac{1}{x} = \frac{1}{+\infty} = 0$$

En otros casos los límites se pueden calcular sustituyendo:

$$\lim_{x \to 1} \frac{3x^3 - 2x^2 + 2x - 1}{2x^3 - x + 1} = \frac{3 \cdot 1^3 - 2 \cdot 1^2 + 2 \cdot 1 - 1}{2 \cdot 1^3 - 1 + 1} = \frac{2}{2} = 1$$

Si nos encontramos una indeterminación tipo $\frac{0}{0}$, tenemos que factorizar los polinomios y simplificar:

$$\lim_{x \to 2} \frac{x^2 - 3x + 2}{x^2 + x - 6} = \lim_{x \to 2} \frac{(x - 2)(x - 1)}{(x - 2)(x + 3)} = \lim_{x \to 2} \frac{x - 1}{x + 3} = \frac{2 - 1}{2 + 3} = \frac{1}{5}$$

Si tras la factorización nos encontramos con una indeterminación del tipo $\frac{k}{0}$; $k \in \Re$, debemos calcular los límites laterales estudiando los signos.

$$\lim_{x \to 2} \frac{x^2 - 1}{x^2 + x - 6} = \frac{1}{0} \quad (indeterminado)$$

$$\lim_{x \to 2^{-}} \frac{x^{2} - 1}{x^{2} + x - 6} = \lim_{x \to 2^{-}} \frac{(x+1)(x-1)}{(x-2)(x+3)} = \lim_{x \to 2^{-}} \frac{3 \cdot 1}{0^{-} \cdot 5} = \frac{3}{0^{-}} = -\infty$$

$$\lim_{x \to 2^{+}} \frac{x^{2} - 1}{x^{2} + x - 6} = \lim_{x \to 2^{+}} \frac{(x+1)(x-1)}{(x-2)(x+3)} = \lim_{x \to 2^{+}} \frac{3 \cdot 1}{0^{+} \cdot 5} = \frac{3}{0^{+}} = +\infty$$

$$\Rightarrow \nexists \text{ límite (no coinciden los laterales)}$$

Método del conjugado

Este método se usa para resolver indeterminaciones en las que aparecen raíces cuadradas. La idea es eliminar las raíces, utilizando la fórmula $(a+b)\cdot(a-b)=a^2-b^2$

Ejemplos:

•
$$\lim_{x \to 2} \frac{\sqrt{x} - \sqrt{2}}{x - 2} = \frac{0}{0}$$
 (indeterminado)

$$\lim_{x \to 2} \frac{\sqrt{x} - \sqrt{2}}{x - 2} = \lim_{x \to 2} \frac{\left(\sqrt{x} - \sqrt{2}\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)}{\left(x - 2\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)} = \lim_{x \to 2} \frac{\left(\left(\sqrt{x}\right)^2 - \left(\sqrt{2}\right)^2\right)}{\left(x - 2\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)} = \lim_{x \to 2} \frac{x - 2}{\left(x - 2\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)} = \lim_{x \to 2} \frac{\left(\sqrt{x} - \sqrt{2}\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)}{\left(x - 2\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)} = \lim_{x \to 2} \frac{\left(\sqrt{x} - \sqrt{2}\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)}{\left(x - 2\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)} = \lim_{x \to 2} \frac{\left(\sqrt{x} - \sqrt{2}\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)}{\left(x - 2\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)} = \lim_{x \to 2} \frac{\left(\sqrt{x} - \sqrt{2}\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)}{\left(x - 2\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)} = \lim_{x \to 2} \frac{\left(\sqrt{x} - \sqrt{2}\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)}{\left(x - 2\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)} = \lim_{x \to 2} \frac{\left(\sqrt{x} - \sqrt{2}\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)}{\left(x - 2\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)} = \lim_{x \to 2} \frac{\left(\sqrt{x} - \sqrt{2}\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)}{\left(x - 2\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)} = \lim_{x \to 2} \frac{\left(\sqrt{x} - \sqrt{2}\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)}{\left(x - 2\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)} = \lim_{x \to 2} \frac{\left(\sqrt{x} - \sqrt{2}\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)}{\left(x - 2\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)} = \lim_{x \to 2} \frac{\left(\sqrt{x} - \sqrt{2}\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)}{\left(x - 2\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)} = \lim_{x \to 2} \frac{\left(\sqrt{x} - \sqrt{2}\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)}{\left(x - 2\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)} = \lim_{x \to 2} \frac{\left(\sqrt{x} - \sqrt{2}\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)}{\left(x - 2\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)} = \lim_{x \to 2} \frac{\left(\sqrt{x} - \sqrt{2}\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)}{\left(x - 2\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)} = \lim_{x \to 2} \frac{\left(\sqrt{x} - \sqrt{2}\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)}{\left(x - 2\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)} = \lim_{x \to 2} \frac{\left(\sqrt{x} - \sqrt{2}\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)}{\left(x - 2\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)} = \lim_{x \to 2} \frac{\left(\sqrt{x} - \sqrt{2}\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)}{\left(x - 2\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)} = \lim_{x \to 2} \frac{\left(\sqrt{x} - \sqrt{2}\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)}{\left(x - 2\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)} = \lim_{x \to 2} \frac{\left(\sqrt{x} - \sqrt{2}\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)}{\left(x - 2\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)} = \lim_{x \to 2} \frac{\left(\sqrt{x} - \sqrt{2}\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)}{\left(x - 2\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)} = \lim_{x \to 2} \frac{\left(\sqrt{x} - \sqrt{2}\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)}{\left(x - 2\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)} = \lim_{x \to 2} \frac{\left(\sqrt{x} - \sqrt{2}\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)}{\left(x - 2\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)} = \lim_{x \to 2} \frac{\left(\sqrt{x} - \sqrt{2}\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)}{\left(x - 2\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)} = \lim_{x \to 2} \frac{\left(\sqrt{x} - \sqrt{2}\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)}{\left(x - 2\right) \cdot \left(\sqrt{x} + \sqrt{2}\right)} = \lim_{x \to 2} \frac{\left(\sqrt{$$

$$= \lim_{x \to 2} \frac{1}{\sqrt{x} + \sqrt{2}} = \frac{1}{\sqrt{2} + \sqrt{2}}$$

•
$$\lim_{x \to +\infty} \sqrt{x^2 + 1} - \sqrt{x^2 + x} = \infty - \infty$$
 (indeterminado)

$$\lim_{x \to +\infty} \sqrt{x^2 + 1} - \sqrt{x^2 + x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x^2 + 1} - \sqrt{x^2 + x}\right) \cdot \left(\sqrt{x^2 + 1} + \sqrt{x^2 + x}\right)}{\left(\sqrt{x^2 + 1} + \sqrt{x^2 + x}\right)} = \lim_{x \to +\infty} \frac{(x^2 + 1) - (x^2 + x)}{\left(\sqrt{x^2 + 1} + \sqrt{x^2 + x}\right)} = \lim_{x \to +\infty} \frac{-x + 1}{\left(\sqrt{x^2 + 1} + \sqrt{x^2 + x}\right)} = \lim_{x \to +\infty} \frac{-x}{\left(\sqrt{x^2 + 1} + \sqrt{x^2 + x}\right)} = \lim_{x \to +\infty} \frac{-x}{2x} = \frac{-1}{2}$$

(nótese que, al igual que en las funciones racionales, el límite del cociente viene determinado por los términos de mayor grado del numerador y denominador).

Número e – indeterminaciones tipo 1[∞]

Se define el número e como el resultado del límite

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \approx 2.718281828459045235360...$$

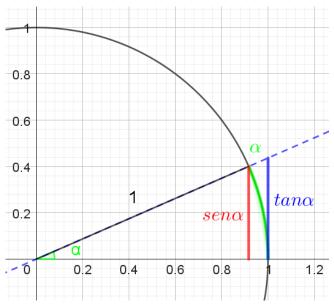
El número e aparece al resolver las indeterminaciones del tipo 1^{∞} , veamos algún ejemplo:

$$\lim_{x \to +\infty} \left(\frac{x^2 + 1}{x^2 - 2x} \right)^{2x + 1} = \lim_{x \to +\infty} \left(1 + \frac{x^2 + 1}{x^2 - 2x} - 1 \right)^{2x + 1} = \lim_{x \to +\infty} \left(1 + \frac{x^2 + 1}{x^2 - 2x} - \frac{x^2 - 2x}{x^2 - 2x} \right)^{2x + 1} = \lim_{x \to +\infty} \left(1 + \frac{2x + 1}{x^2 - 2x} \right)^{2x + 1} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{x^2 - 2x}{2x + 1}} \right)^{2x + 1} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{x^2 - 2x}{2x + 1}} \right)^{2x + 1} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{x^2 - 2x}{2x + 1}} \right)^{2x + 1} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{x^2 - 2x}{2x + 1}} \right)^{2x + 1} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{x^2 - 2x}{2x + 1}} \right)^{2x + 1} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{x^2 - 2x}{2x + 1}} \right)^{2x + 1} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{x^2 - 2x}{2x + 1}} \right)^{2x + 1} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{x^2 - 2x}{2x + 1}} \right)^{2x + 1} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{x^2 - 2x}{2x + 1}} \right)^{2x + 1} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{x^2 - 2x}{2x + 1}} \right)^{2x + 1} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{x^2 - 2x}{2x + 1}} \right)^{2x + 1} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{x^2 - 2x}{2x + 1}} \right)^{2x + 1} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{x^2 - 2x}{2x + 1}} \right)^{2x + 1} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{x^2 - 2x}{2x + 1}} \right)^{2x + 1} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{x^2 - 2x}{2x + 1}} \right)^{2x + 1} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{x^2 - 2x}{2x + 1}} \right)^{2x + 1} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{x^2 - 2x}{2x + 1}} \right)^{2x + 1} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{x^2 - 2x}{2x + 1}} \right)^{2x + 1} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{x^2 - 2x}{2x + 1}} \right)^{2x + 1} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{x^2 - 2x}{2x + 1}} \right)^{2x + 1} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{x^2 - 2x}{2x + 1}} \right)^{2x + 1} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{x^2 - 2x}{2x + 1}} \right)^{2x + 1} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{x^2 - 2x}{2x + 1}} \right)^{2x + 1} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{x^2 - 2x}{2x + 1}} \right)^{2x + 1} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{x^2 - 2x}{2x + 1}} \right)^{2x + 1} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{x^2 - 2x}{2x + 1}} \right)^{2x + 1} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{x^2 - 2x}{2x + 1}} \right)^{2x + 1} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{x^2 - 2x}{2x + 1}} \right)^{2x + 1} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{x^2 - 2x}{2x + 1}} \right)^{2x + 1} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{x^2 - 2x}{2x + 1}} \right)^{2x + 1} = \lim_{x \to +\infty} \left(1 + \frac{1}{\frac{x^2 - 2x}{2x + 1}} \right)^{2x + 1} = \lim_{x \to +\infty}$$

En general, si $\lim_{x \to k} f(x)^{g(x)} = 1^{+\infty}$ podemos operar para que aparezca el número e:

$$\lim_{x \to k} f(x)^{g(x)} = \lim_{x \to k} \left(1 + \frac{1}{f(x) - 1} \right)^{\frac{1}{f(x) - 1} \cdot g(x) \cdot (f(x) - 1)} = \lim_{x \to k} e^{g(x) \cdot (f(x) - 1)}$$

Funciones trigonométricas



En una circunferencia de radio 1, el valor del ángulo (en radianes) coincide con la longitud del arco.

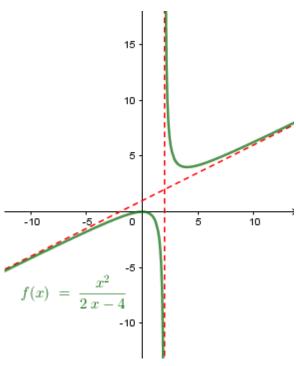
Cuando $\alpha \to 0$ se cumple $\alpha \approx sen \alpha \approx tan \alpha$. Esto permite sustituir sen x por x en un límite cuando $x \to 0$

Ejemplo:

$$\lim_{x \to 0} \frac{2 \operatorname{sen} x \cdot (x-1)}{x^2 + x} = \lim_{x \to 0} \frac{2 x \cdot (x-1)}{x^2 + x} = \lim_{x \to 0} \frac{2 x \cdot (x-1)}{x \cdot (x+1)} = \lim_{x \to 0} \frac{2 \cdot (x-1)}{(x+1)} = -2$$

Asíntotas

Son rectas a las que la gráfica de la función se va acercando cada vez más.



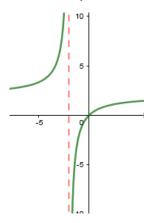
Hay 3 tipos de asíntotas:

Asíntotas verticales (x=k)

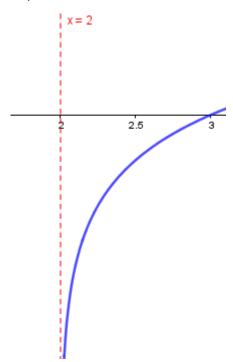
La función f tiene una asíntota vertical en x=k si al calcular el $\lim_{x \to k} f(x)$, al menos uno de los límites laterales tiende a infinito.

Ejemplos:

• La función $f(x) = \frac{2x}{x+2}$ tiene una asíntota vertical x=-2 (por la izquierda +\infty y por la derecha -\infty)



• La función $f(x) = \log(x-2)$ tiene una asíntota vertical x=2 (el límite lateral derecho se va a $-\infty$)

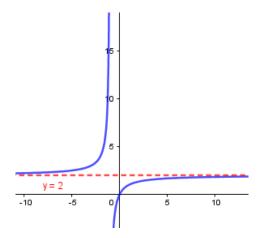


Asíntotas horizontales (y=k)

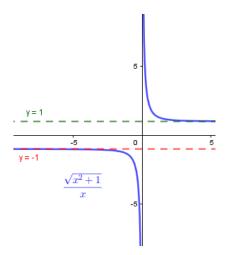
La recta y=k es una asíntota horizontal de f(x) si se cumple $\lim_{x \to +\infty} f(x) = k$ ó $\lim_{x \to -\infty} f(x) = k$ (nótese que una función puede tener, a lo sumo, dos asíntotas horizontales)

Ejemplos:

• y=2 es asíntota horizontal de $f(x) = \frac{2x}{x+1}$ (tanto en + ∞ como en - ∞)



• Para la función $f(x) = \frac{\sqrt{x^2 + 1}}{x}$, la recta y=1 es asíntota en +\infty y la recta y=-1 lo es en -\infty



Asíntotas oblicuas (y=mx+n)

La recta y=mx+n es una asíntota oblicua de f(x) en + ∞ si $m = \lim_{x \to +\infty} \frac{f(x)}{x}$ y $n = \lim_{x \to +\infty} f(x) - mx$

Ejemplos:

• La recta y=x-1 es asíntota oblicua de $f(x) = \frac{x^2}{x+1}$ (tanto en + ∞ como en - ∞)

$$m = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x^2}{x^2 + x} = \lim_{x \to +\infty} \frac{x^2}{x^2} = 1$$

$$n = \lim_{x \to +\infty} f(x) - x = \lim_{x \to +\infty} \frac{x^2}{x + 1} - x = \lim_{x \to +\infty} \frac{x^2 - x^2 - x}{x + 1} = \lim_{x \to +\infty} \frac{-x}{x + 1} = -1$$

$$\Rightarrow y = x - 1$$

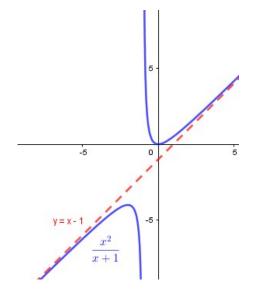
$$as intota oblicua en + \infty$$

$$m = \lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{x^2}{x^2 + x} = \lim_{x \to -\infty} \frac{x^2}{x^2} = 1$$

$$n = \lim_{x \to -\infty} f(x) - x = \lim_{x \to -\infty} \frac{x^2}{x + 1} - x = \lim_{x \to -\infty} \frac{x^2 - x^2 - x}{x + 1} = \lim_{x \to -\infty} \frac{-x}{x + 1} = -1$$

$$\Rightarrow y = x - 1$$

$$as intota oblicua en -\infty$$



• Las rectas y=x e y=-x son asíntotas oblicuas de la función $y=\sqrt{x^2+1}$

$$m = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{\sqrt{x^2 + 1}}{x} = \lim_{x \to +\infty} \frac{\sqrt{x^2}}{x} = 1$$

$$n = \lim_{x \to +\infty} \sqrt{x^2 + 1} - x = \lim_{x \to +\infty} \frac{(\sqrt{x^2 + 1} - x)(\sqrt{x^2 + 1} + x)}{(\sqrt{x^2 + 1} + x)} = \lim_{x \to +\infty} \frac{1}{(\sqrt{x^2 + 1} + x)} = 0$$

$$\Rightarrow y = x$$

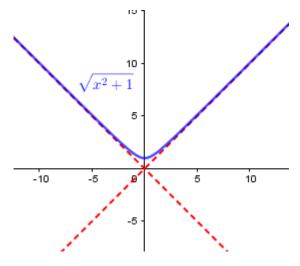
$$as intota oblicua en + \infty$$

$$m = \lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{\sqrt{x^2 + 1}}{x} = \lim_{x \to -\infty} \frac{\sqrt{x^2}}{x} = \lim_{x \to -\infty} \frac{|x|}{x} = -1$$

$$n = \lim_{x \to -\infty} \sqrt{x^2 + 1} + x = \lim_{x \to -\infty} \frac{(\sqrt{x^2 + 1} + x)(\sqrt{x^2 + 1} - x)}{(\sqrt{x^2 + 1} - x)} = \lim_{x \to -\infty} \frac{1}{(\sqrt{x^2 + 1} - x)} = 0$$

$$\Rightarrow y = -x$$

$$as intota oblicua en -\infty$$



Observaciones:

- Una función puede tener, como mucho, dos asíntotas oblicuas (una en $+\infty$ y otra en $-\infty$).
- Las asíntotas oblicuas son incompatibles con las horizontales, es decir, si una función tiene una asíntota horizontal en +∞, ya no puede tener una oblicua en +∞ (aunque sí podría tenerla en -∞).
- Las funciones racionales tienen las mismas asíntotas en $+\infty$ y en $-\infty$ (con lo que es suficiente estudiar solo uno de esos límites)