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Experimentos Aleatorios

Experimento aleatorio y experimento determinista

Un experimento se dice que es determinista si es posible predecir el resultado antes de realizar el
experimento.

Un experimento se dice que es aleatorio si tiene varios resultados posibles y a priori no sabemos
cual de ellos se va a producir.

Ejemplo:

Si tiramos un dado y medimos el tiempo que tarda en caer al suelo, estamos hablando de un
experimento determinista, ya que las leyes de la fisica permiten predecir el resultado del
experimento. Por el contrario, si tiramos el mismo dado y observamos cual de las 6 caras queda
hacia arriba, estamos ante un experimento aleatorio, ya que a priori, no disponemos de una ley
fisica que nos permita preveer el resultado.

Espacio muestral

En un experimento aleatorio, al conjunto de los posibles resultados del experimento se le conoce
como espacio muestral.

Ejemplo:

Al tirar un dado con sus caras numeradas, y observar cudl es la cara que queda hacia arriba, el
espacio muestral seria el conjunto Q= (1,2,3,4,5,6]

Sucesos
En un experimento aleatorio se le llama suceso a cualquier subconjunto del espacio muestral.

Ejemplos:

Si tiramos un dado y observamos qué cara queda hacia arriba podremos observar los siguientes
sucesos:

e {sacar numero par} = {2,4,6}

* {sacar un nimero menor que 5} = {1,2,3,4}
« {145}

* {sacar un nimero mayor que 2} = {3,4,5,6}

Tipos de sucesos:

* Suceso elemental es aquel que se corresponde con un solo elemento del espacio muestral,
por ejemplo: "sacar un 6 al tirar un dado"

* Suceso compuesto, es el que se corresponde con varios elementos del espacio muestra, por
ejemplo: "sacar un niimero impar al tirar un dado"

*  Suceso seguro es aquel que siempre ocurre, por ejemplo: "sacar un nimero menor que 10 al
tirar un dado". Al suceso seguro se le representa por Q

*  Suceso imposible es aquel que nunca ocurre, por ejemplo "sacar un nimero mayor que 6 al
tirar un dado". El suceso imposible se representa por &

* Dos sucesos se dice que son compatibles si pueden ocurrir los dos a la vez (por ejemplo
"sacar par" y "sacar n° mayor que 3". En caso contrario se dice que son incompatibles (por
ejemplo "sacar par" y "sacar n° menor que 2".



* Dos sucesos son complementarios cuando siempre ocurre uno de los dos, pero nunca los
dos al mismo tiempo. Se denotan por A y A (complementario de A)

* Al conjunto de todos los sucesos se le conoce como espacio de sucesos y lo
representaremos por E

Operaciones con sucesos — Leyes de De Morgan
Unién:
La unién de dos sucesos Ay B es aquel suceso AUB que ocurre cuando se cumple uno de los dos,

A o B.

—_n

Por ejemplo, si al tirar un dado consideramos el suceso A="sacar nimero par" y el suceso B
un numero mayor que 3", entonces su union: AUB = "sacar 2,4, 5 6 6"

sacar

Interseccidn:

La interseccion de dos sucesos A y B es aquel suceso ANB, que ocurre cuando se cumplen los dos
alavez, Ay B.

—_n

Con los sucesos del ejemplo anterior: ANB = "sacar 4 ¢ 6"

Diferencia;:

La diferencia de dos sucesos A y B es aquel suceso A-B, que ocurre si se cumple A pero no se
cumple B (A—-B=ANB)

Si calculamos la diferencia de los sucesos de los ejemplos anteriores obtenemos A-B="sacar 2"

Propiedades

Conmutativa AUB=BUA ANB=BNA

Asociativa (AUB)UC=AU(BUC) (ANB)NC=AN(BNC)
Elemento neutro AUJ=A ANQR=A

Idempotente AUA=A ANA=A

Distributiva AU(BNC)=(AUB)n(AuUC) AN(BuUC)=(AnB)U(ANC)

Leyes de De Morgan:

AUB=ANB

ANB=AUB




Probabilidad

Definicién
Si consideramos un expertimento aleatorio con un espacio de sucesos E, definimos probabilidad
como una funciéon P: E=[0,1] que asigna a cada suceso un niimero entre 0y 1.

La funcién de probabilidad ha de cumplir las siguientes condiciones (axiomas de Kolmogorov):

P(A)=0,V A€E
P(Q)=1
ANB=@=P(AUB)=P(A)+P(B)

Propiedades
« P(A)=1-P(A)
* P(D)=0
* AcB=P(A)<P(B)
* AcB=P(B)=P(A)+P(B—A)
* P(AUB)=P(A)+P(B)-P(ANB)
* P(AUBUC)=P(A)+P(B)+P(C)-P(ANB)-P(ANC)-P(BNC)+P(ANBNC)

Frecuencia de un suceso. Ley de los grandes numeros.

Si realizamos un experimento aleatorio N veces, tendremos que un suceso A ocurre un nimero na
n

0 0 . A
de veces. Llamaremos entonces frecuencia relativa del suceso A al cociente f,(A) =
La frecuencia relativa cumple los axiomas de Kolmogorov, por tanto podria considerarse una
medida de probabilidad, el problema radica en que si repetimos la serie de N experimentos
obtendremos frecuencias diferentes. No obstante, la ley de los grandes nimeros dice que al
aumentar el nimero de repeticiones, las frecuencias relativas se acercan cada vez mas a las
probabilidades reales de los sucesos:

lim f\(A)=P(A)

Regla de Laplace

Si tenemos un espacio muestral compuesto por un niimero finito de sucesos elementales y todos
ellos tienen la misma probabilidad, entonces podemos calcular la probabilidad de un suceso A:

_ n°decasos favorables
n°de casos posibles

P(A)

Ejemplo:

Al tirar un dado el nimero de casos posibles es de 6. En principio ninguna cara es distinta de las
otras (el dado no estéd cargado) y por tanto podemos considerar que las 6 caras tienen la misma
probabilidad, a partir de ahi podemos calcular la probabilidad de los distintos sucesos utilizando la
regla de Laplace:

#(2,46] 3 _

P(Sacar Par)= #2406 _3_1. P(Sacarunniimero mayor que 4 )=

1 #(5,6}
6 6 2°

6

:Z:
6
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Técnicas de recuento

Estrategia Multiplicativa — Diagramas en arbol.

Supongamos que en un restaurante vemos el siguiente menu del dia

Primer plato Ensalada \Ensalada\ \Sopa\

Sopa

Carne Asada

Segundo plato |Merluza a la romana ‘Carne ‘ ‘Merluza‘ ‘Paella‘

Paella
Flan ‘Flﬂ ‘ ‘Piﬁa ‘

Postre

Pifia

Si queremos saber cudntas opciones diferentes hay en el ment debemos multiplicar 2-3-2=12
opciones:

Ensalada-Carne-Flan Sopa-Carne-Flan

Ensalada-Carne-Pifia Sopa-Carne-Pina

Ensalada-Merluza-Flan | Sopa-Merluza-Flan

Ensalada-Merluza-Pifia | Sopa-Merluza-Pifia

Ensalada-Paclla-Flan Sopa-Paella-Flan

Ensalada-Paella-Pina Sopa-Paella-Pina

En resumen, si el nimero de opciones disponible en cada eleccion no depende de las otras, el
numero total de casos se obtiene multiplicando el nimero de opciones posibles en cada eleccion.

Permutaciones

Una permutacion de n elementos es cada una de las maneras en las que se pueden ordenar esos n
elementos.

Para calcular el nimero de permutaciones que se pueden hacer con n elementos ( P, ) iremos
colocando esos n elementos en una lista ordenada:

Supongamos que tenemos 4 elementos, numerados del 1 al 4. Las listas ordenadas que podemos
formar con esos 4 elementos son las siguientes:

1-2-3-4 2-1-3-4 3-1-2-4 4-1-2-3 .

1-2-4-3 2-1-4-3 3-1-4-2 4-1-3-2 Permutaciones de 4
elementos:

1-3-2-4 2-3-1-4 3-2-1-4 4-2-1-3 P =41=24

1-3-4-2 2-3-4-1 3-2-4-1 4-2-3-1

1-4-2-3 2-4-1-3 3-4-1-2 4-3-12

1-4-3-2 2-4-3-1 3-4-2-1 4-3-2-1

Si queremos formar listas ordenadas con n elementos, para la primera posicion de la lista tendremos
n posibilidades. Para la segunda posicion el nimero de posibilidades es n-1, ya que no tendremos
disponible el elemento que hemos colocado en primera posicion. En la tercera posicion no
podremos poner los dos que ya hemos colocado, asi pues quedaran n-2 elementos disponibles.

‘ nopciones | n-1 opciones | -2 OPCIONES | wocceeevr cevenr aeenennn. ‘ 2 opciones ‘ 1 opci(')n‘

De esta forma iremos colocando todos los elementos hasta que en la ultima posicion haya s6lo un
elemento disponible.



Para saber cudntas listas diferentes nos pueden salir, debemos multiplicar las opciones que tenemos

en cada posicion de la lista, obteniendo:

P,=n!=n-(n—1)-(n—2)-...-2-1

Variaciones sin repeticion

Las variaciones sin repeticion (o simplemente variaciones) de m elementos, tomados de n en n, son
listas ordenadas de longitud n, que podemos formar con m elementos distintos.

1

2

n-1

n

‘ m opciones ‘ m-1 opciones ‘ m-2 opciones ‘

‘ m-n+2 opciones | m-n+1 opciones

El nimero de variaciones sin repeticion de m elementos tomados de n en n viene dado por

r"’":(m—n)!

m!

ya que:
m!

m:(m—1)-...-(m—n+1)-(m—n)-(m—n—1)-...-2-1

(m—-n)!
Si tenemos cinco elementos disponibles y queremos formar listas de tres elementos donde tengamos
en cuenta el orden, las listas posibles serdn:

(m—n)-(m—n-1)-...-2-1

=m:(m—1)-...-(m—n+1)

1-2-3 2-1-3 3-1-2 4-12 5-1-2
1-2-4 2-1-4 3-1-4 4-1-3 5-1-3
1-2-5 2-1-5 3-1-5 4-1-5 5-1-4
1-3-2 2-3-1 3-2-1 4-2-1 5-2-1
1-3-4 2-3-4 3-2-4 4-2-3 5-2-3
1-3-5 2-3-5 3-2-5 4-2-5 5-2-4
1-4-2 2-4-1 3-4-1 4-3-1 5-3-1
1-4-3 2-4-3 3-4-2 4-3-2 5-3-2
1-4-5 2-4-5 3-4-5 4-3-5 5-3-4
1-5-2 2-5-1 3-5-1 4-5-1 5-4-1
1-5-3 2-5-3 3-5-2 4-5-2 5-4-2
1-5-4 2-5-4 3-5-4 4-5-3 5-4-3
Combinaciones

Variaciones de 5
elementos tomados
de 3 en 3:
V5,3=5~4~3=60

Las combinaciones de m elementos tomados de n en n, C,,, son listas de longitud n que podemos
formar con esos m elementos disponibles. La diferencia respecto a las variaciones es que en este
caso el orden de los elementos no importa.

Si observamos en el ejemplo anterior las variaciones de 5 elementos tomadas de 3 en 3, veremos
que hay varias variaciones que representan la misma combinacion:

1-2-3=1-3-2=2-1-3=2-3-1=3-1-2 = 3-2-1

1-2-3 1-2-4 1-2-5 1-3-4 1-3-5 1-4-5 2-3-4 2-3-5 2-4-5 3-4-5
1-3-2 1-4-2 1-5-2 1-4-3 1-5-3 1-5-4 2-4-3 2-5-3 2-5-4 3-5-4
2-1-3 2-1-4 2-1-5 3-1-4 3-1-5 4-1-5 3-2-4 3-2-5 4-2-5 4-3-5
2-3-1 2-4-1 2-5-1 3-4-1 3-5-1 4-5-1 3-43 3-5-2 4-5-2 4-5-3
3-2-1 4-1-2 5-1-2 4-1-3 5-1-3 5-1-4 4-2-3 523 5-2-4 5-3-4
3-122 4-2-1 5-2-1 4-3-1 5-3-1 5-4-1 4-3-2 5-3-2 5-4-2 5-4-3
{1,2,3} | {1,244} | {1,2,5} | {1.,3,4} | {1,3,5} | {1,4,5} | {2,3.4} | {2,3,5} | {2.,4,5} {3.4,5}




Aqui podemos ver que con la combinacién elementos 1, 2 y 3 podemos formar 6 variaciones

(permutando el orden de los elementos). Lo mismo ocurre con las otras combinaciones posibles, por

. 60
tanto podemos calcular el nimero de combinaciones: C; ;= - 10

En general, una combinacion (lista no ordenada) de n elementos da lugar a n! variaciones (listas
ordenadas) que se obtienen permutando los elementos que forman la combinacion. Es decir:
14 m!

Vpu=Con'P, & C, =—20=
m,n m,n n m,n Pn (m_n),n,

Para expresar el nimero de combinaciones es habitual utilizar nimeros combinatorios:

C _Im\_ m!
™ \n) (m—n)!-n!

Probabilidad Condicionada

Definicion
Se le llama probabilidad condicionada de un suceso A respecto a otro suceso B, P(A/B), a la

probabilidad de que ocurra el suceso A suponiendo que ocurre el suceso B.

La probabilidad condicionada también se puede calcular de la siguiente manera:

P(A/B):% si P(B)+#0
Ejemplo 1:

Consideramos el experimento aleatorio consistente en extraer consecutivamente dos bolas de una
bolsa donde hay 5 bolas negras y 5 bolas blancas. Entonces si consideramos el suceso B="sacar la

4
primera bola blanca" y A="sacar la segunda bola blanca" entonces P (A/ B)=§ ya que, aplicando
la regla de Laplace, después de la primera extraccion quedan 9 bolas de las cuales 4 son blancas.

Ejemplo 2:

Al tirar un dado podemos considerar el suceso A="sacar un nimero par" y B="sacar un nimero
mayor o igual a 4". Si calculamos P(A/B) tendremos, segun la regla de Laplace:

P(ANB)_2/6_2
P(B) 3/6 3

P(A/B)=
Lo cual es coherente, ya que hay 3 nimeros mayores o iguales a cuatro, de los cuales 2 son pares.

Independencia de sucesos

Dos sucesos A 'y B se dicen independientes si

P(ANnB)=P(A)-P(B)

* Lo anterior es equivalente a:
P(A/B)=P(A) otambién P(B/A)=P(B)

* Sidos sucesos son independientes, también lo son sus complementarios, es decir, siAy B
son independientes, entonces también lo seran AyB, AyB y AyB.



La misma definicion puede aplicarse a mas sucesos:

Un conjunto de n sucesos Aj,...,A, son independientes <P (A,N..NA,)=P(A,)-..-P(A,)

Ejemplo 1:

Si tenemos una bolsa con 5 bolas blancas y 5 bolas negras, podemos considerar el experimento
aleatorio consistente en extraer una bola al azar, devolver la bola a la bolsa y realizar una segunda
extraccion aleatoria. En este experimento podemos considerar los sucesos:

B,="La primera bola es blanca" y B,="La segunda bola es blanca"

Como la segunda extraccion es independiente de la primera, entonces la probabilidad del suceso
B, N B,=Sacar dos bolas blancas , tendra una probabilidad:

P(B,N BZ):P(Bl)-P(BZ):liO-l—SO:%
Ejemplo 2:
Si repetimos el experimento anterior, pero sin volver a introducir la primera bola en la bolsa
entonces los sucesos B; y B, ya no son independientes, ya que P(Bz/Bl)Zg y P(BZ)Z%

En este caso
5.
10

P(B,NB,)=P(B,) P(B,/B,)=

ol
0N

Teorema de las probabilidades totales

Decimos que los sucesos Aj,...,A, forman un sistema completo de sucesos si cumplen:
* AU.LUA=Q (su unidn es el espacio muestral)
* ANA;=C i#j (sonsucesosmutuamente incompatibles)

Teorema de las probabilidades totales:

Si los sucesos A, ,...,A, forman un sistema completo de sucesos, entonces la probabilidad de un
suceso B podra expresarse de la forma:

P(B)=P(B/A,)-P(A,)+..+P(B/A,)-P(A,)

La demostracion de este teorema es bastante sencilla, yaque B=(BNA,)U...U(BNA,) ycomo
(BNA)N(BNA;)=D yaque A,NA,= entonces:

P(B)=P(BNA,)+..+P(BNA,)=P(B/A,)-P(A,)+..+P(B/A,)-P(A,)

A
A As \\‘\x | //

! A;
R

"



Consideremos el experimento, visto anteriormente, consistente en extraer dos bolas sin

reemplazamiento de una bolsa donde hay 5 bolas blancas y 5 bolas negras. Si consideramos el

suceso Bi="sacar bola blanca en la primera extraccion", entonces los sucesos B,y su

complementario B, forman un sistema completo de sucesos. Asi pues, podremos utilizar el
—n

teorema de las probabilidades totales para calcular la probabilidad del suceso B,="sacar bola blanca
en la segunda extraccion"

P(B,)=P(B,/B,)-P(B,)+P(B,/B,)-P(B))== —+=-—=

Teorema de Bayes

Sea Aj,...,A, un sistema completo de sucesos y B un suceso cualquiera. Entonces

P(B/A,)-P(A)

(B/A,)-P(A,)+..+P(B/A,)-P(A,)

P(A,./B):P

Las probabilidades P(A,) sellaman probabilidades "iniciales" o "a priori"
Las probabilidades P (A/B) se conocen como probabilidades "finales" o "a posteriori"
Las probablidades P (B/ A,-) se conocen como verosimilitudes.

Demostracion:
P(B/Ai)'P(Ai)
P(B)

P(A/B)-P(B)=P(A,NB)=P(B/A,)-P(A,)=P(A,/B)=

y aplicando el teorema de las probabilidades totales en el denominador obtenemos el resultado
deseado.

Ejemplo:

Consideremos el experimento aleatorio ya estudiado, consistente en extraer sin reemplazamiento
dos bolas de una bolsa donde hay 5 blancas y 5 negras. No obstante supongamos que tan solo
podemos observar el color de la segunda bola extraida y que esa bola fuese blanca.

Si quisiesemos calcular la probabilidad de que la primera bola también fuese blanca, estariamos
hablando de la probabilidad a posteriori P (B,/B,) , la cual podriamos calcular utilizando el
teorema de Bayes:

P(B2/31>'P(B1)
P(B2/B1)'P(Bl)+P(B2/B1)'P(B1)

)—L
o‘m
ol

P(B,/B,)=

=3

5‘01 RN
+ .

©olui

)—\
cD|U1

Variables Aleatorias

Definicion:
Una variable aleatoria es una funcion X :Q->R | que asigna un valor numérico a cada elemento
del espacio muestral.

Ejemplo 1:

Si consideramos el experimento aleatorio consistente en tirar dos monedas y observar si en cada una
sale cara o cruz, tendremos un espacio muestral formado por 4 elementos:

Q={ccj, {c,H), {thel y {H+}



Sobre este espacio muestral, podemos definir una variable aleatoria que cuente el nimero de caras

0 si s=[+,+]
X(s)={1 si s={+,c] 6 {c,+]

2 si s=lc,c]
Ejemplo 2:

Si consideramos el experimento aleatorio consistente en lanzar dos dados, podremos definir una
variable aleatoria para la suma de las puntuaciones obtenidas:

Q={1,1},{1,2},{1,3},{1,4},{1,5},{1,6},{2,1},{2,2},{2,3},{2.4},{2,5},{2,6},{3,1},{3.2},{3.3},
13:41,13,55,13,65, 14, 11,44,21,14,3},14.45, 14,55, {4,6},15,1},15,25,15,31,{5,4},15,5},15,61,16,1},
{6,2},16,3},{6,4},{6,5},16,6}

2 si s={1,1}
3 si s=(1,2] 6 (2,1]

4 si s={1,3},(2,26(3,1)
¥(s)={> si s=(1,4},{2,3},{3,2}6{4,1}
11 si s={5,6} ¢ (6,5]

12 si s=(6,6]

Variables aleatorias discretas

Una variable aleatoria se dice que es discreta, si el rango de posibles valores es un conjunto finito o
numerable (algo asi como una sucesion infinita)

Para una variable aleatoria discreta, X, es posible definir una funcién de probabilidad p:9R-[0,1]
de tal forma que P(Xi):P(X:Xi)

La funcién de probabilidad cumple:
l. p (X i) =0
2. 2x=1
También se puede definir la funcién de distribucion de X, F:9R-[0,1] como
F(x)=P(X<x); xeR
Ejemplo

Si consideramos la variable aleatoria X="numero de caras al tirar dos monedas" su funcion de
probabilidad sera

0,25 si x=0 0 si x<0
05 si x=1 . e 0,25 si 0=<x<l1
x)={" 5 5n Fix)={"
P( ) 025 si x=2 y su funcion de distribucion ( ) 0.75 si 1<x<2
0 enotrocaso 1 si 2<x

Variables aleatorias continuas

Una variable aleatoria continua puede tomar un conjunto no numerable de valores. En la practica
esto quiere decir que puede tomar cualquier valor posible en un intervalo de numeros reales.

Por ejemplo, el tiempo que tarda en estropearse una bombilla es una variable aleatoria continua, ya
que a priori, el conjunto de valores posibles es cualquier numero positivo.



Otra caracteristica importante de las variables aleatorias continuas es que cada valor concreto tiene
probabilidad cero. Es decir, la probabilidad de que la bombilla se estropee exactamente
130675254,235874615... segundos después de su instalacion es cero.

Cuando se trata de variables continuas lo que tiene sentido es hablar de probabilidades de
intervalos, es decir, la probabilidad de que la variable tome algiin valor de un intervalo concreto.
Por ejemplo, la probabilidad de que una bombilla determinada dure entre 3 y 4 afios si es distinta de
cero.

La siguiente cuestion es como calcular la probabilidad de un intervalo, mejor dicho, la probabilidad
de que la variable aleatoria tome alguno de los valores de un intervalo dado. Para eso estd la funcion
de densidad de probabilidad de la variable aleatoria.

La funcioén de densidad de una variable aleatoria continua X es una funcion, f,que ha de cumplir:

e f(x)=0; —oco<x<+ow

. jof(x)dx:1

y P(asXsb)ZJ‘f(x)dx

a

A partir de la funcién densidad, la funcion de distribucion se define de manera similar al caso
discreto: F(X):P(XSX):J f(t)de

La funcion de distribucion cumple las siguientes propiedes:

. limF(x)=0 , Ilim F(x)=1
X =>—0 y X 2+
+ P(a<X<b)=F(b)-F/(a)

« F'(x)=f(x)

Esperanza de una variable aleatoria

Si la variable aleatoria X es discreta, entonces
E[X]:Z Xi'p(xi)

mientras que si es continua

+

E[X]=£x-f(x)dx

La esperanza de una variable aleatoria viene siendo la media ponderada de los valores de la
variable. Tiene el significado de "valor esperado", de ahi su nombre.

Ejemplo:

Al tirar un dado perdemos el dinero apostado salvo que salga 6, en cuyo caso nos devuelven nuestra
apuesta multiplicada por 5. Si realizamos una apuesta de 1 €, entonces la variable aleatoria discreta
X={dinero ganado} toma los valores:

X= —1€ sisalel,2,3,465
+4€ sisale un 6

Suponiendo que el dado no esté cargado, la probabilidad de ganar es de 1/6 y la de perder 5/6. Si
calculamos la esperanza:



E(X):—l-P(X:—1)+4-P(X:4):—1-%+4%:g—1:—0,16

Por lo tanto, lo esperado es perder aproximadamente 17 céntimos por cada apuesta de 1€. Esto
quiere decir, que si apostamos 1000 veces, lo esperado es perder unos 167 €

Media y varianza de una variable aleatoria

Se define como la media de una variable aleatoria a su esperanza u=E(X)

La varianza se define como o°=E((X—u)’) donde E(( )= (x -f(x)dx siX esuna

variable aleatoria continua, o E((X—u))=)_ (x,~u )P (X X; ) si X es discreta.
La desviacion tipica ¢ es la raiz cuadrada de la varianza.

La varianza también se puede calcular mediante la formula ¢*=E(X*)—u’

En el ejemplo anterior:

1
—E(X)=—=
u=E(X) :

5 1.21_7
E(X)=(-1)P(X=—1)+4>-P(X=4)=1-2+16-—="—===
(X)=(=1)" P(X=—1)+4"- P(X=4)=1-2+16-2=%-=

2 (X2)_ 2_7 i 125 ~3.47

2 36 36

Ejemplo:
Consideremos la variable aleatoria con funcidon de densidad:

f(x):[Ze_zx six>0

0 six<0
Vemos que cumple f(x)=0V xeR y ff(x)dxzf2372xdxz[_eizx]ow: —(=1)=1
5 0
+00 +00 o YO —2x [*®
Entonces M:E(X):ff(x)dx:f2x-e72xdx:[—x-e72x]0 —f—ezde:l—eZXx—e2 l =
o ) 0 0
—2x
e e (1) 11
_Xliﬂ( ¢ ) (2)_0+2_2
m =0 y lim(—e )= lim =X= lim —==0
yaque XI_I)CT:O =0 y X+ X>+0 ezx X"+°°232X

E(x*)= fxf dx= fx e 2de—{— 2e_zx];w—f—2xe_2de:




Distribucion Binomial

Definicién
Consideramos un experimento aleatorio que tiene dos posibles resultados, llamémosles "éxito" y
"fracaso". Supongamos que repetimos el experimento aleatorio n veces, de tal modo que

* Los n ensayos son independientes entre si.

* La probabilidad de "éxito", p, permanece constante.

Entonces podemos definir una variable aleatoria X="ntimero de exitos" y a la funcion de
distribucion de probabilidad de X le llamaremos distribucion binomial B(n,p).

Ejemplo

Si tiramos una moneda no cargada 5 veces, se cumple que cada tirada es independiente de las otras
y ademas la probabilidad de sacar cara siempre es 0,5. Por lo tanto la variable aleatoria X="numero
de caras" sigue una distribucién binomial B(5, 0.5).

Si queremos calcular la probabilidad de sacar 3 caras tendremos que ver en primer lugar en cuantos
de los sucesos del eS(acio muestral salen 3 caras. Obtendremos que el nimero de sucesos en que

5 — . —
= =10
salen 3 caras es de NRETEY

IICCC++!|’ IICC+C+V!’ HC_"_CCJ’_H, H_;’_CCC_;’_H , HCC_;’__;’_C", "CJ’_C—}_C", |'+CC+CVV’ ||C++CCCH’
H+C+CCCH y Vl++CCC"

(Para contar miramos en que posiciones podemos colocar las C, asi obtenemos Cs3 casos)

Cada uno de los 10 casos anteriores tiene la misma probabilidad: P(C)*-P(+)’=0,5%0,5

Por lo tanto P(X=3)=(2)'0,53 0,5

Funcion de Probabilidad

En general, si X sigue una distribucion binomial B(n,p) entonces

P(X:k):(Z) pq" ;k=0,...,n

donde p="probabilidad de éxito" y q=1-p="probabilidad de fracaso".

Acontinuacion podemos ver varios ejemplos de graficas de funciones de probabilidad de
distribuciones binomiales con diferentes parametros:
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Media y varianza de la distribucion Binomial

La media de la distribucion binomial:

w=E(X)=np

donde n es el nimero de repeticiones y p la probabilidad de "exito"

La varianza viene dada por:

0" =npq

con q = "probabilidad de fracaso" = 1-p

Distribucion Normal

Definicion
Decimos que una variable aleatoria continua X, sigue una distribucion normal de parametros p y o,
XeN (u ,0) , cuando su funcion de densidad de probabilidad es de la forma:

f(x)= (le—ne_i(xou)

con W,0€R;0>0

Media y varianza de una distribucién normal

La media y la varianza de la variable aleatoria se corresponden con el valor de los parametros py
o, de tal modo que:

XeN(u,0)= media:u

. 2
varianzda .o

Caracteristicas de una distribucion normal

* En una distribucién normal los datos estan agrupados en torno a la media, de tal manera que
sea poco probable encontrar datos que difieran sustancialmente de la media.

* Es simétrica, la probabilidad de encontrar datos mayores que la media es la misma que la de
encontrar datos menores que la media, dicha probabilidad s6lo depende de lo alejados que
estén de la media.

* Existe un resultado tedrico (teorema central del limite) que garantiza que cuando una
variable es la acumulacion de multitud de pequetios factores independientes dicha variable
sigue una distribucion normal. Por ejemplo la altura de una persona depende de diversos
factores independientes: alimentacion, factores genéticos, hormonales, contaminacion
ambiental, etc. Por tanto dicha altura se considerara como una variable aleatoria con



distribucidén normal.

n=20 pw=20
c =105 * o=1
0z
1]
-4 3 1 2 3 4 -4 3 -2 1 [s] 1 2 3 4
g
=20
0.8 _ !1, = 0
o=15
o=2
0z
. /\
o 1 2 3 4 -5 -4 -3 -2 -1 o 1 2 3 4 5

Tipificacidn de una distribucién normal

Si tenemos una variable aleatoria continua X, y queremos calcular la probabilidad de que la variable
b

aleatoria tome valores dentro del intervalo [a,b], P(a<X<b), deberiamos hacer f f(x)dx
En el caso de la distribucion normal, el problema esta en que la funcion de densidad no tiene una
primitiva analitica, con lo que no se puede utilizar la regla de Barrow para calcular probabilidades.

En la préctica, si la distribucion X es una N(0,1) se usa una tabla de probabilidades (ver anexo),
donde aparecen las probabilidades de que X tome valores menores que un determinado niimero,
P(X<a). A partir de esta tabla podemos calcular el resto de probabilidades, utilizando las
propiedades y teniendo en cuenta que la distribucion normal es simétrica respecto a la media.

Ejemplo:
Supongamos que X €N (0,1) y queremos calcular P(X<-2). Como la densidad de probabilidad de

una N(0,1) es simétrica respecto al 0, tendremos que
P(X<-2)=P(X>2)=1-P(X<2)=1-0,9772=0,0228

-4 -2 0 2 4 -4 -2 0 2 4

Si la distribucion X es una normal N(u,6) lo que hay que hacer es transformarla en una N(0,1):

XeN(n,0)=2teN(0,1)

Ejemplo:
Supongamos que X €N(20,5) y queremos calcular P(X>21). Entonces la variable aleatoria



Y:X—ZO

€N (0,1) vy por tanto

X—20 S 21-20
5 5

P(X>21)=P( )ZP(Y>0.2)=1—P(Ys0.2)=1—0.579320.4297

Supongamos ahora que X€N(7,0.5) y queremos calcular P(6<X<8) :
67 X7 8—7)
< <

=P(-2<Y<2)=P(Y<2)-P(Y<-2)=
05 0.5 05

P(Y<2)-P(Y<-2)=P(Y<2)-P(Y>2)=P(Y<2)-[1-P(Y<2)]=
=0.9772—(1-0.9772)=0,9954

P(6<X<8):P(

Aproximacién de la Binomial por la Normal

Si XeB(n,p), de tal forma que np=5 'y n(1-p)=5 entonces X puede aproximarse por una
distribucién normal de pardametros u=np y o=vnp(1—p)

X€B(n, p)
n-p=5 :>XNN(”P,\/HP(1_P))
n:(1—p)=5
0 2 4 G 8 10 12 0 2 4 5 g 10 12
Binomial(20 , 0.25) Aproximacion B(20 , 0.25) por N(5,v3.75)

Correccion de medio punto

A la hora de realizar la aproximacion hay que tener en cuenta que en una variable aleatoria continua
la probabilidad de que la variable tome un valor puntual es cero ( X€N (u,0)=P(X=a)=0).

Con lo cual, si aproximamos una binomial por una normal y deseamos estimar la probabilidad de un
valor entero determinado, deberemos obtener un intervalo que represente la probabilidad de dicho
entero. Tomaremos ese intervalo centrado en el valor deseado y con una unidad de longitud.

Si X€B(n,p) ¢ YEN(np,Vnpq) entonces P(X=a)~P(a—0.5<Y<a+0.5) ; a€N

siempre que np=5 y ng=5

Si lo que queremos es aproximar la probabilidad de un intervalo entonces también hemos de tener
en cuenta la probabilidad de esos valores puntuales.

Ejemplos:

*  XeB(20,0.3)= P(X=8)~P(Y>7.5) dondeY €N (6,V4.2) la cual calculamos tipificando
la variable



50,732 |=1-P| Y=8<0,732 |~ 1-0.7673=
V4.2

> — —
V4.2

_p|Y-6_75-6|_ ,[Y-6
P(Y>7.5)—P(\/4'_2 ¢4.2) P(

=0.2327

X€B(20,0.3)=>P(X>8)~P(Y>8.5) dondeY €N (6,V4.2) la cual calculamos tipificando
la variable

p(y>85)=p[ Y=858576) p[Y=6_ 4 5rl-1-p[¥Y=8<120|=1-0.8888=
Va2 42 V4.2 V4.2
=0.1112
0 2 4 i} 8 10 12
XeB(20,0.3) YEN(6,4.2)

P(X=8)=0.1144 P(7.5<Y <8.5)=0.1209
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