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Primitiva de una función

Definición:

Dada una función f , decimos que F  es una primitiva de f  si F ' = f

Ejemplos:

• x3

3
 es primitiva de x2

• −cos x  es primitiva de sen x

• ln ∣ x ∣ es primitiva de 
1
x

 

Observaciones:

• La primitiva no es una única función, sino un conjunto de funciones que se diferencian en 

una constante. Es decir x3

3
+ k ; k ∈ℜ  serían las primitivas de x2

• No toda función tiene una primitiva que se pueda expresar analíticamente. Esto quiere decir 
que hay funciones cuya primitiva no se puede escribir utilizando las funciones habituales 
(exponenciales, trigonométricas, ...), por ejemplo la función e−x2

es de este tipo.

Integral Indefinida
Se conoce como integral indefinida de una función f, al conjunto de todas las primitivas de f. Suele 

representarse como ∫ f ( x)dx=F (x)+ k ; k∈ℜ  donde F es una primitiva de f. 

El simbolo ∫  se llama integral y la expresión f ( x)dx  integrando.  k ∈ℜ  se conoce como 

constante de integración.

Propiedades

∫ ( f + g )( x)dx=∫ f (x)dx+∫ g ( x )dx  

∫ (k · f )( x)dx=k ·∫ f ( x)dx ; k∈ℜ  

Cálculo de primitivas
Como veréis el cálculo de primitivas es bastante más complejo que el de derivadas, y a diferencia 
de este, los métodos que veremos a continuación no funcionan para cualquier función. Como por 
ejemplo para aquellas funciones cuya primitiva no se pueda expresar de forma analítica.

Integrales inmediatas

(Consecuencia de la tabla de derivadas)
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Integral de una potencia

∫ c dx=c · x+ k ; c , k∈ℜ

∫ x
n
dx=

x
n+ 1

n+ 1
+ k ; n≠−1 ; n , k∈ℜ

∫ 1

x dx= ln | x|+ k ; k ∈ℜ

 

Integrales trigonométricas

∫ sen (x)dx=−cos (x)+ k ; k∈ℜ  ∫ 1

√1−x
2 dx=arcsen x+ k ; k ∈ℜ  

∫cos ( x) dx= sen( x)+ k ; k∈ℜ  ∫ −1

√1− x
2

dx=arccos x + k ; k ∈ℜ  

∫(1+ tan
2

x ) dx=∫ 1

cos
2
x

= tan x+ k ; k∈ℜ  ∫ 1

1+ x
2 dx=arctan x + k ; k∈ℜ  

 Integrales exponenciales

∫e
x
dx=e

x
+ k ; k∈ℜ  ∫ a

x
dx=

a
x

ln a
+ k ; k ∈ℜ  

Regla de la cadena y cambio de variable

La regla de la cadena decía que ( f ∘ g ) ' ( x )= f ' ( g ( x )) · g ' ( x ) , por tanto si podemos expresar 
nuestra integral en estos términos tendríamos:

 ∫ f ' (g ( x))· g ' ( x)dx=∫ ( f ∘ g )' ( x)dx=( f ∘ g)( x)  

Ejemplo:

∫cos ( x
2)· 2x dx=sen ( x

2)+ k ; k∈ℜ  

 Otra forma de aprovechar la regla de la cadena sería haciendo un cambio de variable. En este caso 
introduciríamos una nueva variable que sería función de x, t ( x ) , entonces tendríamos que

dt = t ' ( x ) dx  o bien dx = dt
t ' ( x )  

Ejemplos:

• Veamos como utilizar el cambio de variable para calcular la primitiva de tan x :

∫ tan x dx=∫ sen x
cos x

dx  si hacemos t = cos x  tendremos dt =−senx dx  con lo cual
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∫ sen x
cos x

dx=∫ −1
t

dt=−∫ 1
t

=−ln|t|+k=−ln|cos x|+k  

• ∫ √3x+ 1 dx  si hacemos t 2=3x+ 1 , entonces tendremos que x = t2−1
3

 y dx = 2
3

t dt  con 

lo que la integral se transforma de la siguiente manera:

 ∫ √3x+ 1 dx = ∫ t ·
2
3

t dt =
2
3
∫ t

2
dt =

2
9

t
3
+ k =

2
9 √(3x+ 1)3

+ k ; k ∈ℜ

• ∫ √1−x
2
dx  aquí hacemos x = sen t , dx =cos t dt  y por tanto

∫ √1−x
2
dx=∫ √1−sen

2
t · cos t dt=∫ cos

2
t dt  

Despejando en la fórmula cos 2 t =cos2 t − sen2 t =cos2 t−(1−cos2 t )  queda

∫ cos
2
t dt=∫ 1+cos 2 t

2
dt=

t
2

+
sen 2 t

4
+k ; k ∈ℜ  

deshaciendo el cambio de variable t =arcsen x tenemos 

∫ √1−x
2
dx=

arcsen x
2

+
sen (2 · arcsen x)

4
+k ; k∈ℜ  

que se puede simplificar a 

∫ √1−x
2
dx=

arcsen x+ x· √1−x
2

2
+k ; k ∈ℜ  

Integración por partes

El método de integración por partes se basa en la derivación del producto

(u · v )' =u ' · v+ u · v '⇒∫ (u · v) ' dx=∫ u ' · v dx+∫ u · v '  

y por tanto

∫ u ' (x) · v ( x) dx=u ( x) · v ( x)−∫ u( x)· v ' ( x)dx  

La dificultad de este método consiste en elegir adecuadamente las funciones u y v

Ejemplos:

• ∫ x · sen x dx  aquí haremos u ( x )=−cos x⇒ u ' ( x )= sen x  y v ( x )= x ⇒ v ' ( x )=1 , 

entonces:

∫ x · sen x dx=−cos x · x+∫−cos x dx=−cos x · x−sen x+ k ; k ∈ℜ

• ∫ ln x dx  en este caso u ' ( x )=1  y v ( x )=ln x  con lo que u(x)=x  y v ' (x )=
1
x

∫ ln x dx=x · ln x−∫ x ·
1
x

dx=x · ln x−x+ k ; k∈ℜ  

• ∫e
x
· sen x dx  haremos u ' ( x )= ex  y v ( x )= sen x :
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∫e
x
· sen x dx=e

x
· sen x−∫e

x
· cos x dx  haciendo otra vez integración por partes con 

u ' ( x )= ex y v ( x )=cos x tendremos:

∫e
x
· sen x dx=e

x
· sen x−∫e

x
· cos x dx=e

x
· sen x−[e

x
· cos x−∫ e

x
· (−sen x) dx ]  

Simplificando:

∫e
x
· sen x dx=e

x
· sen x−e

x
· cos x−∫ e

x
· sen xdx  entonces

∫e
x
· sen x dx=

e
x
· sen x−e

x
· cos x

2
+ k ; k∈ℜ  

Funciones racionales

Las funciones racionales son de la forma 
p( x)
q (x) , donde p y q son polinomios, por ejemplo

∫ x
2
+ x−1

x
2
+ x−2

dx

El método para integrar una  función racional consiste en descomponerla en otras funciones 
racionales más sencillas. 

La primera simplificación que se ha de hacer consiste en asegurarse que el grado de p ( x )  es 
menor que el de q ( x ) . De no ser así se divide p ( x )  entre q ( x ) , obteniendose un cociente

c ( x )  y un resto r ( x ) , entonces como p=q · c+ r  tendremos ∫ p( x)
q( x) dx=∫ c( x)dx+∫ r ( x)

q( x) dx

en donde el grado de r ( x )  es menor que el de q ( x )

En nuestro ejemplo:

∫ x
2
+ x−1

x
2
+ x−2

dx=∫ 1 dx+∫ 1

x
2
+ x−2

dx  

Una vez nos aseguramos que el grado de p ( x )  es menor que el de q ( x ) deberemos factorizar
q ( x ) . A partir de aquí hay que estudiar varios casos posibles:

Caso 1: q ( x )  tiene todas las raíces reales y no tiene raíces múltiples

En este caso q ( x )=( x−a1) · ... · ( x−an ) , donde n es el grado de q ( x ) , y la integral se puede 
descomponer en integrales más sencillas de la siguiente forma:

∫ p( x)
q( x) dx=∫ A

1

x−a 1

dx+ . . . +∫ A
n

x−an

dx  

Las integrales que aparecen son de tipo 1/x y el único problema radica en obtener los coeficientes
A1, ... An  , para lo cual será necesario resolver un sistema de ecuaciones.

Ejemplo:

∫ 1

x
2
+ x−2

dx=∫ A
1

x−1
dx+∫ A

2

x+ 2
dx  para calcular A1  y A2  tendremos que 

1= A1 · ( x+ 2 )+ A2 · ( x−1 ){ A1+ A2 =0
2A1−A2 =1

{A1=−1 /3
A2 =1 /3  
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y por tanto

∫ 1

x
2
+ x−2

dx=
1
3
∫ 1

x−1
dx−

1
3
∫ 1

x+2
dx=

1
3

ln|x−1|−1
3

ln|x+2|+k ; k∈ℜ  

Caso 2: q ( x )  tiene todas las raíces reales pero tiene raíces múltiples

En este caso q ( x )=( x−a1)
m1 · ... · ( x−ak )

m k , donde mi  es la multiplicidad de la raíz a i

en esta ocasión la integral se descompone:

∫ p(x )
q( x) dx=∫ A1

x−a
1

dx+ . . . +∫ A
m1

( x−a1)
m

1
dx+∫ B1

x−a
2

dx+ . . . +∫ B
m2

( x−a 2)
m

2

+ . . .  

Ejemplo:

∫ 2 x
2
−3 x+ 4

x
3
+ 3 x

2
−4

dx=∫ 2 x
2
−3 x+ 4

(x+ 2)
2
· ( x−1)

dx=∫ A1

x−1
dx+∫ A2

x+ 2
dx+∫ A3

( x+ 2 )
2 dx  

en este caso

2 x2−3 x+ 4= A1 · ( x+ 2)2 + A2 ( x−1 ) · ( x+ 2 )+ A3 · ( x−1) { 2= A1+ A2

−3=4A1 + A2 + A3

4=4A1−2A 2−A3

 

A1 =
1
3

, A2 =
5
3

 y  A3 =−6

con lo cual

∫ 2 x
2
−3 x+4

(x+2)
2
· (x−1 )

dx=
1
3
∫ 1

x−1
dx+

5
3
∫ 1

x+2
dx−6∫ 1

( x+2)
2 dx=

1
3

ln|x−1|+ 5
3

ln|x+2|+ 6
x+2

+k ; k∈ℜ  

Caso 3: q ( x )  tiene raíces complejas.

Como q ( x )  es un polinomio con coeficientes reales, las raices complejas serán pares conjugados
z =a + b i , z̄ =a + b i tal que ( x−z ) · ( x− z̄ )= x2−2a x+ (a2+ b2 )

Entonces en la descomposición de la fracción, para cada par de raíces complejas aparecerá un 

sumando de la forma 
Ax + B

x2−2a x+ (a2+ b2)
= Ax+ B

( x−a )2+ b2  

A continuación veremos como se integran estas expresiones:

Caso 3.1

∫ 1

x
2
+ a

dx  en este caso hay que recordar la derivada (arctg ) ' x= 1

1+ x2  así pues

∫ 1

x
2
+ a

dx=
1
a
∫ 1

( x /√a )2
+ 1

dx=
1
a
∫ 1

t
2
+ 1

· √a dt= √a
a

arctg t+ k=
√a
a

arctg x

√a
+ k  

con el cambio t = x

√a
, dt = dx

√a
⇒ dx=√a dx  

Caso 3.2
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∫ 1

x
2
+ ax+ b

dx en este caso habrá que buscar dos números m y n tales que

∫ 1

x
2
+ ax+ b

dx=∫ 1

( x+ m)2
+ n

dx  para luego hacer cambio de variable, buscando la derivada del arco 

tangente, como en el caso anterior.

Ejemplo:

∫ 1

x
2
+ x+ 1

dx  como x2 + x + 1=( x+ m)2 + n { 1=2m
1=m2+ n

{m=1 / 2
n= 3/ 4

así pues

∫ 1

x
2
+ x+ 1

dx=∫ 1

( x+ 1 /2)2
+ 3/4

dx=
4
3
∫ 1

((2x+ 1) /√3)2
+ 1

dx

haciendo t =
( 2x+ 1 )

√3
, dt =

2

√3
dx⇒ dx = √3

2
dt  tenemos

4
3
∫ 1

((2x+ 1) /√3)2
+ 1

dx=
4
3
∫ 1

t
2
+ 1

√3
2

dt=
2 √3

3
arctg t+ k=

2 √3
3

arctg 2x+ 1

√3
+ k ; k∈ℜ  

Caso 3.3

∫ p( x)
q (x) dx=∫ cx+ d

x
2
+ ax+ b

dx  en este caso buscaremos una expresión del tipo

p ( x )= k · q ' ( x )+ r ( x )  con lo que la integral se descompondría de la siguiente forma

∫ p( x)
q (x) dx=∫ k

q' ( x)
q( x) dx+∫ r (x)

q ( x) dx=k· ln|q( x)|+∫ r ( x )
q ( x) dx  siendo ∫ r (x )

q(x ) dx  ya estudiada en el 

caso 3.2

Ejemplo:

∫ 3x−8

x
2
+ x+ 1

dx  como ( x2+ x + 1) ' =2x+ 1 al dividir 3x−8  entre 2x+ 1  tenemos cociente 3/2 y 

resto -19/2 con lo cual

∫ 3 x−8

x
2
+ x+1

dx=
3
2
∫ 2 x+1

x
2
+x+1

dx−
19
2
∫ 1

x
2
+ x+1

dx=
3
2

ln|x
2
+ x+1|−19

2
·

2 √3
3

arctg 2 x+1

√3
+k ; k∈ℜ
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Integral Definida
La integral definida surge del problema del cálculo de áreas limitadas por curvas.

 

Partición de un intervalo

Llamamos particion de un intervalo [ a , b ]  a un conjunto de puntos P={x0 , x1 , ... , xn }  de tal 
forma que a= x0 < x1< ...< xn−1 < xn =b  (la partición divide el intervalo [ a , b ]  en n 
subintervalos [ x k−1 , xk ] , k =1, ... n

Definiremos el diámetro o norma de la partición ∣ P ∣  como ∣ P ∣=máx {xk – x k−1 ; n=1, .. , n }  

Suma de Riemann

Se llama suma de Riemann de la función f  relativa a la partición P={x0 , x1 , ... , xn} y a los 

puntos intermedios yk ∈[ xk −1 , x k ] ; k =1, ... , n  al número: ∑
k =1

n

f ( yk ) · ( xk− xk −1)

Gráficamente este número representa la suma de las áreas de los rectángulos, de base ( xk− xk−1 )  y 
altura f ( yk )
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Podemos observar que la suma de Riemann es una aproximación al área delimitada por el eje OX y 
la gráfica de la función f. Intuitivamente, esta aproximación será mejor si añadimos más puntos a la 
partición de tal manera que su diametro sea más pequeño.

        

Sumas superior e inferior

Si f es una función acotada en [a,b], se define la suma inferior de f relativa a la partición
P={x0 , x1 , ... , xn }  como

L ( f , P )=∑
k =1

n

mk · ( xk− xk −1)  donde mk =ínfimo { f ( x ) ; x∈[ xk−1 , xk ]}

De manera similar se define la suma superior

U ( f , P )=∑
k =1

n

M k · ( x k− xk −1)  donde M k = supremo { f ( x ) ; x ∈[ x k−1 , xk ]}

Gráficamente:

   

 Suma inferior  Suma superior 
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Como podemos ver, para cualquier partición P, se verifica:

L ( f , P )≤ Área ≤U ( f , P )  

Definición de integral definida

Diremos que la función f es integrable en el intervalo [a,b] si se cumple

lím
∣ P ∣ → 0

L ( f , P )= lím
∣ P ∣ → 0

U ( f , P )  

para cualquier sucesión de particiones, P,  tal que ∣ P ∣ → 0

Si f es integrable en [a,b] entonces cualquier suma de Riemann tendrá el mismo límite que L(f,P) y 
U(f,P). Además ese límite coincidirá con el valor del área de la región limitada por la gráfica de la 
función en el intervalo [a,b] y el eje OX. Este valor se conoce como integral definida y se representa
como ∫a

b f ( x ) dx

∫a
b f ( x ) dx= lím

∣ P ∣ → 0

L ( f , P )= lím
∣ P ∣ → 0

U ( f , P )= lím
∣ P ∣ → 0

∑
k =1

n

f ( yk ) · ( xk−xk −1)   

Observación:
Hay que tener en cuenta que la integral definida, a diferencia del área, tiene signo. Cuando la 
gráfica esté por encima del eje OX, la integral será positiva, mientras que si está por debajo, la 
integral es negativa.

A1 =∫a
b f ( x ) dx> 0

A2 =∫b
c f ( x ) dx < 0

Funciones integrables

• Toda función continua en un intervalo cerrado [a,b] es integrable.

• Si f es continua en (a,b) y existen y son finitos los límites laterales lím
x → a+

f ( x )  y

lím
x → b−

f ( x )  entonces f es integrable en (a,b).

Este resultado sirve para justificar la integrabilidad en funciones definidas a trozos (siempre 
que no tengan asíntotas verticales)

• La función de Dirichlet f ( x )={1 si x∈Q
0 si x∈ I

 no es integrable en ningún intervalo
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• La función 
1
x

 no es integrable en (0,1)

Propiedades de la integral definida

Sean f y g una funciones integrables en el intervalo [a,b]

1. ∫a
a f ( x ) dx =0

2. ∫a
b k dx= k · (b−a ) ; k ∈ℜ

3. ∫b
a f ( x ) dx =−∫a

b f ( x ) dx

4. ∫a
b ( f + g )( x ) dx =∫a

b f ( x ) dx + ∫a
b g ( x ) dx  

5. ∫a
b ( k · f ) ( x ) dx= k · ∫a

b f ( x ) dx ; k ∈ℜ

6. ∫a
b f ( x ) dx=∫a

c f ( x ) dx+ ∫c
b f ( x ) dx ; c∈( a , b )

7. { f ( x )≤0 ; ∀ x∈[ a , b ]}⇒∫a
b f ( x ) dx≤0

8. { f ( x )≤g ( x ) ; ∀ x∈[ a , b ]}⇒∫a
b f ( x ) dx≤∫a

b g ( x )

Integral y derivada

Teorema del valor medio del cálculo integral

Si f  es continua en el intervalo [ a , b ] , entonces existe un valor c∈(a , b )  tal que 

∫a
b f ( x ) dx = f (c ) · (b−a )  

Demostración:

Por ser f continua, f tiene máximo y mínimo en [a,b]. Sean M =máx { f ( x ) ; x∈[ a , b ]}  y
m=mín { f ( x ) ; x∈[ a , b ]}

entonces como m≤ f ( x )≤M ;∀ x∈[ a , b ]  tendremos que

∫a
b m dx≤∫a

b f ( x ) dx≤∫a
b M dx ⇒ m · (b−a )≤∫a

b f ( x ) dx≤M (b−a )  

o lo que es lo mismo 

m≤ 1
b−a

· ∫a
b f ( x ) dx≤M  

ahora bien, como f es continua, f alcanzará todos los valores entre el mínimo y el máximo, incluido 

el valor 
1

b−a
· ∫a

b f ( x ) dx  es decir:

∃ c∈[ a , b ] / f (c )= 1
b−a

· ∫a
b f ( x ) dx  

y por tanto

∫a
b f ( x ) dx= f ( c ) · (b−a )
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Interpretación geométrica

Existe algún valor c∈[ a , b ]  tal que el área del rectángulo de base (b−a )  y altura f ( c )  
coincide con el área bajo la curva de la función f en el intervalo [ a , b ]

  

Una interpretación alternativa consiste en decir que existe un valor c∈[ a , b ]  tal que si calculamos
el área de la región limitada por la gráfica de f y por la recta y= f (c )  en el intervalo [ a , b ] , 
obtenemos que el área situada por encima de la recta es igual al área de la región situada por debajo 
de esta.

 

Teorema fundamental del cálculo

Si f es una función continua en el intervalo [a,b], entonces la función

F ( x )=∫a
x f ( y ) dy  

es derivable y además

F ' ( x )= f ( x )

Demostración:

F ' ( x )= lím
h → 0

F ( x+ h )−F ( x )
h

= lím
h → 0

∫a
x+ h f ( y ) dy−∫a

x f ( y ) dy

h
= lím

h → 0

1
h
∫x

x + h f ( y ) dy  

Al ser f continua, podemos aplicar el teorema del valor medio del cálculo integral

∃ ch∈[ x , x + h ] / f ( ch)=
1
h
∫x

x+ h f ( y ) dy  

Si tenemos en cuenta que lím
h → 0

f (ch)= f ( x )  entonces

12
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F ' ( x )= lím
h → 0

1
h
∫x

x + h f ( y ) dy= lím
h → 0

f (ch)= f ( x )  

Regla de Barrow

Si f es una función continua en [a,b] y G es una función primitiva de f, es decir G'(x)=f(x), 
entonces

∫a
b f ( x ) dx=G (b )−G ( a )  

Demostración:

Sea F ( x )=∫a
x f ( y ) dy , por el teorema fundamental del cálculo tenemos que F ' ( x )= f ( x )  , es

decir F es una primitiva de f

Como F y G son dos primitivas de f, entonces F ( x )=G ( x )+ k ; k ∈ℜ

Ya que F (a )=∫a
a f ( y ) dy =0  tendremos que

0=F ( a )=G (a )+ k  k =−G (a )  F ( x )=G ( x )−G ( a )

Por otra parte 

∫a
b f ( y ) dy= F (b )=G (b)−G ( a )
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