- 1. Expresa los siguientes ángulos en randianes:

c) 135°

e) 315°

b) 120°

d) 72°

- f) 210°
- 2. Expresa los siguientes ángulos en grados (utiliza minutos y segundos si es necesario):

b) 5π

- 3. Expresa en función de un ángulo del primer cuadrante:
 - a) sen 250°

h) cos 223°

m) $\cos \frac{-41\pi}{6}$

b) cos 115°

i) tan -305°

c) tan 300°

j) cosec 2240°

n) $\tan \frac{-7\pi}{3}$

d) sec 330°

k) cotang 50°

e) cotg 120° f) tan 270°

 $sen \frac{18\pi}{3}$

o) $\sec \frac{7\pi}{5}$

- g) sen 3254°
- 4. Obtén, con la ayuda de la calculadora las siguientes razones trigonométricas:
 - a) sen (18° 12')
- c) cotg 23° 12′ 13"
- f) $cosec \frac{7 \pi}{4}$

b) $\cos \frac{\pi}{7}$

- d) sen 24° 10' e) sen 24° 10′ 11"
- g) sec 16

- 5. Demuestra que sen 45 ° = $\cos 45$ ° = $\frac{\sqrt{2}}{2}$
- 6. Demuestra que $\cos 60^{\circ} = \frac{1}{2}$ y $sen 60^{\circ} = \frac{\sqrt{3}}{2}$ (Sugerencia: dibuja un triángulo equilátero)
- 7. Utilizando las relaciones que existen entre las razones trigonométricas, calcula el resto de razones trigonométricas en cada caso:
 - a) $sen \alpha = \frac{1}{\sqrt{3}}$; $\pi < \alpha < \frac{3\pi}{2}$
 - b) $\sec \alpha = \frac{-3}{\sqrt{5}}$; $\pi < \alpha < \frac{3\pi}{2}$
 - c) $cotg \alpha = 2$; $0 < \alpha < \frac{\pi}{2}$
 - d) $\tan \alpha = -\sqrt{3}$; $\frac{3\pi}{2} < \alpha < 2\pi$
 - e) $cosec \alpha = \frac{3}{2}$; $\frac{\pi}{2} < \alpha < \pi$

8. Fíjate en los ejemplos y completa esta tabla:

	Seno	Coseno	Tangente
180° - α	sen α		
- α			- tan α
90° - α			
90° + α		-sen α	
180° + α			
270° + α			

9. Expresa la medida de cada ángulo en radianes, relaciónalo con uno del primer cuadrante cuyas razones conozcas, y rellena la tabla con sus razones trigonométricas:

Medida	Radianes	Ángulo 1 ^{er} cuadrante	Sen	Cos	Tg	Sec	Cosec	Cotg
120°	$2\pi/3$	60°	$\sqrt{3}/2$	1/2	$\sqrt{3}$	2	$2\sqrt{3}/3$	$\sqrt{3}/3$
135°								
150°								
210°								
225°								
240°								
300°								
315°								
330°								

10. Sabiendo que so	$en \alpha = \frac{1}{4}$, $cosec \beta = -$	$_{-2}$ y $tg\gamma = \frac{3}{4}$ y qu	ıe α está en el primer	cuadrante, β en
el cuarto y γ en e	el tercero, calcula:			

a)
$$sen 2\alpha$$

d)
$$sen(\alpha + \beta)$$

g)
$$cos(\gamma - \beta)$$

b)
$$\cos \frac{\beta}{2}$$

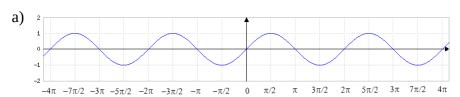
e)
$$sec \frac{\gamma}{2}$$

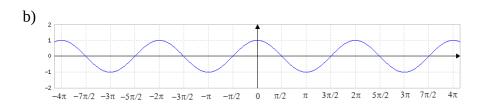
h)
$$cotg \frac{\alpha}{2}$$

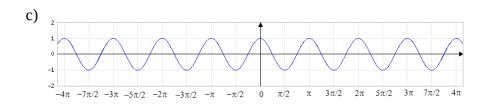
c)
$$tg2\gamma$$

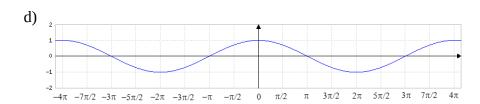
f)
$$\cos 3\beta$$

11. Demuestra las siguientes identidades:


a)
$$\frac{sen\alpha - \cos\alpha}{tg\alpha - 1} = \cos\alpha$$


b)
$$\frac{1+\cot \alpha}{\sec \alpha+\cos \alpha}=\csc \alpha$$

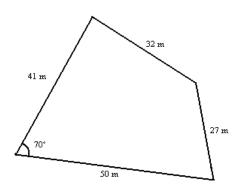

c)
$$tg \alpha + cotg \alpha = sec \alpha \cdot cosec \alpha$$


d)
$$\frac{sen 2\alpha}{1+\cos 2\alpha} = tg \alpha$$

12. Indica a qué función trigonométrica pertenece cada gráfica:

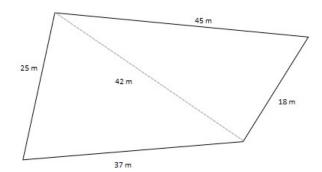
13. Resuelve los siguientes triángulos y calcula su área:

a)
$$a = 6$$
 cm, $b = 3$ cm y $c = 4.5$ cm

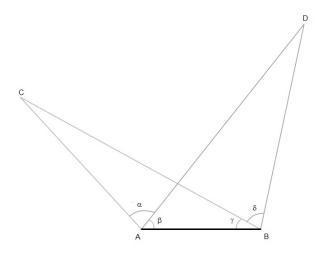

c)
$$\hat{A} = 20^{\circ}$$
, $a = 6 \text{ cm y b} = 15 \text{ cm}$

b)
$$a = 8 \text{ cm}$$
, $\hat{B} = 60^{\circ} \text{ y c} = 6 \text{ cm}$

d)
$$\hat{A} = 60^{\circ}$$
, $a = 7 \text{ cm y b} = 15 \text{ cm}$

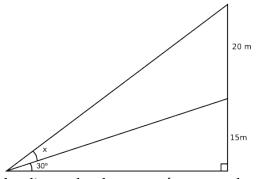

e)
$$a = 6 \text{ cm}, b = 8 \text{ cm y c} = 10 \text{ cm}$$

14. Don Anselmo tiene una finca con forma de cuadrilátero. Los muros que cierran la finca miden 50m, 27m, 32m e 41m. También sabemos que uno de los ángulos del cuadrilátero mide 70°

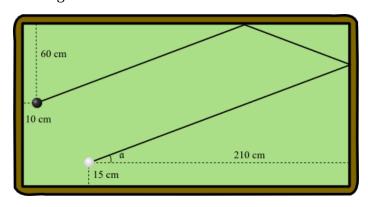


- a) Calcula los ángulos que faltan.
- b) Calcula el área de la finca.

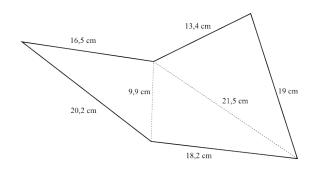
15. Calcula la superficie de la siguiente figura:



16. Calcula la distancia entre los puntos C y D, sabiendo que la distancia entre A y B son 500 m y los ángulos miden: $\alpha = 73^{\circ}10'23''$, $\beta = 62^{\circ}3'43''$, $\gamma = 30^{\circ}11'56''$ y $\delta = 66^{\circ}8'26''$.


17. Tenemos un triángulo de vértices A, B y C, tal que \overline{AB} = 70 cm , \overline{BC} = 45 cm y \overline{CA} = 55 cm En el interior de ese triángulo marcamos un punto P, tal que \overline{PA} = 45 cm y \overline{PB} = 35 cm . Calcula la distancia de P al punto C.

18. Calcula el valor de x:



- 19. Calcula la longitud de las diagonales de un pentágono regular de 1 dm de lado.
- 20. Desde el lugar donde nos encontramos podemos divisar un faro, situado al norte, con un ángulo de 30º respecto a la horizontal. Si nos movemos 30m hacia el este, el ángulo pasa a ser 14º 21' 12". ¿Cuál es la altura del faro?
- 21. La mesa de billar de la figura tiene unas medidas de 250 cm de ancho por 125 cm de largo. Calcula el valor del ángulo α para que la bola de la parte inferior siga la trayectoria descrita

en el dibujo e impacte sobre la otra bola. Nota: se supone que al chocar contra una banda, el ángulo de impacto es igual al de rebote.

22. Calcula el área de la siguiente figura:

23. Calcula los posibles valores de α en cada caso:

a)
$$sen \alpha = \frac{-\sqrt{3}}{2}$$

d)
$$sen \alpha = 0.25$$

h)
$$\cos \alpha = -1$$

$$\frac{2}{\sqrt{2}}$$

e)
$$\cos \alpha = -0.5$$

i)
$$cosec \alpha = -\sqrt{2}$$

b)
$$\cos \alpha = \frac{\sqrt{2}}{2}$$

f)
$$tg \alpha = \sqrt{3}$$

j)
$$sec \alpha = 5$$

c)
$$tg \alpha = -1$$

g)
$$sen \alpha = \frac{4}{5}$$

k)
$$cotg \alpha = -\sqrt{7}$$

24. Resuelve las siguientes ecuaciones:

a)
$$sen2x = 2senx$$

b)
$$\cos 2x - 3 \sin x = 3$$

c)
$$3sen^2x + cos^2x + cosx = 0$$

d)
$$2 \text{ sen}^2 t - \cos t - 1 = 0$$

e)
$$2 \cos^2 x + 5 \sin x = 4$$

f)
$$\cos 2x = \cos x$$

g)
$$\tan x + 3 \cot x = 4$$

h) sen
$$2x + \cos x = 0$$

i)
$$sen x + cos x = 0$$

j)
$$\cos^3 x - 2 \cos^2 x + \cos x - 2 = 0$$

k)
$$2 \operatorname{sen} 2x \cdot \cos x - 3 \operatorname{sen} x = 0$$

1)
$$sen^2 \frac{x}{2} + cosx = \frac{1}{4}$$

a)
$$\begin{cases} x - y = 0 \\ \cos^2 x - \sin^2 y = 1 \end{cases}$$

a)
$$\begin{cases} x-y=0\\ \cos^2 x - sen^2 y = 1 \end{cases}$$
b)
$$\begin{cases} \cos x - \cos y = \sqrt{3}\\ \cos x + \cos y = 0 \end{cases}$$

c)
$$\begin{cases} y = 2x \\ sen x = 2 sen \end{cases}$$

d)
$$\begin{cases} tg(x+y)=1\\ tg(x+tg(y)=1) \end{cases}$$