
Taller de Iniciación a Arduino

Presentación
Este documento sirve como apoyo visual y repositorio de código para las tres
sesiones del taller.

RESUMEN: https://gemini.google.com/share/efb3c0ea058e

SESIÓN 1: Introducción, IDE y Control de LEDs
1. El Ecosistema Arduino
A. La Placa Arduino Uno

La Placa Arduino Uno es el corazón de nuestro sistema. Es un microcontrolador que
puede ser programado para interactuar con el mundo físico.

• Pines Digitales (0-13): Se usan como entradas (ON/OFF) o salidas (HIGH/LOW). Como
salidas, el microcontrolador puede entregar una señal de 5 voltios (HIGH) o 0
voltios (LOW). Estos pines son fundamentales para controlar actuadores sencillos
como LEDs o motores, o para leer el estado de interruptores y pulsadores. Los pines
marcados con ~ (3, 5, 6, 9, 10, 11) soportan PWM (Pulse Width Modulation -
Modulación por Ancho de Pulso), una técnica que permite simular una salida
analógica variando el tiempo que la señal está en HIGH, lo cual es ideal para
controlar el brillo de un LED o la velocidad de un motor.

• Pines Analógicos (A0-A5): Estos pines están diseñados para leer valores variables y
continuos, como el voltaje que proviene de sensores de temperatura, luz o
potenciómetros. La placa utiliza un Conversor Analógico-Digital (ADC) interno de
10 bits, lo que significa que traduce el voltaje de entrada (de 0 a 5 voltios) en
un valor entero que va de 0 a 1023.

Shutterstock Explorar
Este rango de 1024 valores nos da la precisión necesaria para percibir pequeños
cambios en las condiciones físicas.

• Pines de Alimentación (Power): Además de recibir energía por el conector USB o de
barril, la placa proporciona voltajes regulados. 5V y 3.3V son cruciales para alimentar
otros componentes y sensores externos. GND (Tierra) es la referencia de 0 voltios
que debe ser común a todos los elementos del circuito.
B. El Software (IDE)

El Entorno de Desarrollo Integrado (IDE) es donde escribimos y cargamos el código
que define el comportamiento del microcontrolador. Un Sketch de Arduino siempre
debe contener las siguientes dos funciones estructurales:

1. void setup(): Esta función se ejecuta una sola vez inmediatamente después de que
la placa se enciende o se reinicia. Su propósito es la configuración inicial del
hardware y el software. Aquí es donde utilizamos la función pinMode() para declarar
si un pin digital trabajará como entrada (INPUT) o salida (OUTPUT), y donde
inicializamos las comunicaciones seriales (Serial.begin()) o las librerías que gestionan
sensores complejos. Si se omite, el microcontrolador no sabrá cómo interactuar con
los pines externos.

2. void loop(): Esta función se ejecuta continuamente en bucle de forma indefinida,
justo después de que la función setup() ha finalizado su trabajo. Es el programa
principal, el corazón de la lógica de Arduino. En el loop() colocamos el código que
queremos que se repita constantemente: leer el estado de un sensor, procesar un
valor, tomar una decisión (lógica condicional) y, finalmente, activar un actuador. Un
ciclo de ejecución en el loop() suele ser extremadamente rápido.
2. Control de Salidas Digitales (LED)

Tarea: Conectar y hacer parpadear un LED.
Componentes: 1 LED, 1 Resistencia (220 Ohm), Cables Jumper.
Esquema de Conexión:

• El ánodo (pata larga del LED) se conecta al Pin Digital (ej. Pin 13).

• El cátodo (pata corta del LED) se conecta a la Resistencia (220 Ohm).

• La Resistencia se conecta al pin GND (Tierra).

Código 1: Parpadeo Básico (Blink)
Este código demuestra cómo configurar el pin 13 como una salida y alternar su
estado.

// Definimos el pin donde está conectado el LED

const int LED_PIN = 13;

void setup() {

 // Inicializa el pin 13 como una SALIDA (OUTPUT)

 pinMode(LED_PIN, OUTPUT);

}

void loop() {

 // Pone el Pin a ALTO (HIGH), encendiendo el LED

 digitalWrite(LED_PIN, HIGH);

 // Espera 1000 milisegundos (1 segundo)

 delay(1000);

 // Pone el Pin a BAJO (LOW), apagando el LED

 digitalWrite(LED_PIN, LOW);

 // Espera 1000 milisegundos (1 segundo)

 delay(1000);

}

// Usamos el Pin 9, que es compatible con PWM (tiene el símbolo ~)

const int LED_PIN = 9;

void setup() {

 // No necesitamos pinMode() para analogWrite en pines PWM

}

Código 2: Salida Analógica (Fading con PWM)
Usamos un pin PWM (~) para controlar el brillo del LED. analogWrite() acepta valores
de 0 (apagado) a 255 (máximo brillo).
Código Fading PWM

void loop() {

 // Incrementa el brillo (fade in)

 for (int brillo = 0; brillo <= 255; brillo += 5) {

 analogWrite(LED_PIN, brillo);

 delay(30); // Pequeña pausa para ver el cambio

 }

 // Decrementa el brillo (fade out)

 for (int brillo = 255; brillo >= 0; brillo -= 5) {

 analogWrite(LED_PIN, brillo);

 delay(30);

 }

}

SESIÓN 2: Adquisición de Datos (Sensor BMP280)
3. Lectura de Datos de un Sensor
Tarea: Conectar un sensor de Presión y Temperatura BMP280 y leer sus datos a
través de la comunicación I2C, visualizándolos en el Monitor Serie.
A. Comunicación I2C

El BMP280 usa el protocolo I2C, que solo necesita dos cables de datos más
alimentación:

• SDA (Serial Data): Línea de datos. En Arduino Uno, se conecta al pin A4.
• SCL (Serial Clock): Línea de reloj. En Arduino Uno, se conecta al pin A5.

Esquema de Conexión (BMP280 I2C):

| Pin Arduino Uno | Pin BMP280 | Función |

| :--- | :--- | :--- |

| 5V | VCC | Alimentación |

| GND | GND | Tierra |

| A4 | SDA | Datos I2C |

| A5 | SCL | Reloj I2C |

B. Instalación de Librería

Antes de compilar, debemos instalar la librería "Adafruit BMP280" desde el Gestor de
Librerías del Arduino IDE.
Código 3: Lectura del BMP280 y Monitor Serie
Este código inicializa la comunicación Serial y I2C, lee los datos del sensor y los
imprime en el Monitor Serie.

Código Lectura BMP280
// Incluimos las librerías necesarias para I2C y el sensor
#include <Wire.h> // Para comunicación I2C
#include <Adafruit_BMP280.h> // Para el sensor BMP280

// Creamos un objeto para manejar el sensor
Adafruit_BMP280 bmp; // Usaremos la dirección I2C por defecto

void setup() {
 // Inicializamos la comunicación Serial para enviar datos al PC
 Serial.begin(9600);
 while (!Serial); // Espera a que el Monitor Serie esté abierto (solo para placas con
USB nativo)

 Serial.println(F("Prueba de Sensor BMP280"));

 // Intentamos inicializar el sensor
 if (!bmp.begin()) {
 Serial.println(F("¡No se ha encontrado un sensor BMP280 válido!"));
 while (1) delay(10); // Bucle infinito si hay error
 }

 // Configuramos el modo de muestreo (opcional, por defecto es ok)
 bmp.setSampling(Adafruit_BMP280::MODE_NORMAL, /* Modo Normal (operación
continua) */

 Adafruit_BMP280::SAMPLING_X2, /* 2x muestreo de Temperatura */
 Adafruit_BMP280::SAMPLING_X16, /* 16x muestreo de Presión */
 Adafruit_BMP280::FILTER_X16, /* Filtrado de 16 */
 Adafruit_BMP280::STANDBY_MS_500); /* Tiempo de espera */
}

void loop() {
 // Leemos y mostramos los valores
 Serial.print(F("Temperatura = "));
 Serial.print(bmp.readTemperature()); // Lee en grados Celsius
 Serial.println(F(" *C"));

 Serial.print(F("Presion = "));
 Serial.print(bmp.readPressure() / 100.0F); // Convierte de Pascal a hPa (milibares)
 Serial.println(F(" hPa"));

 Serial.println();
 delay(2000); // Lee cada 2 segundos
}
brir

SESIÓN 3: Comunicación Inalámbrica (APC220)
4. Construcción del Sistema de Comunicación Radio
Tarea: Configurar dos placas Arduino con módulos APC220 para que una envíe los
datos del BMP280 y la otra los reciba y muestre.
A. El Módulo APC220

El APC220 permite la comunicación Serial inalámbrica. Necesita ser conectado a un
adaptador USB/TTL para el PC y al Arduino para la comunicación.

Configuración Previa: Antes de conectar al Arduino, se recomienda usar el software
del fabricante para verificar que ambos módulos tengan la misma configuración (ej.
Tasa de Baudios: 9600, Frecuencia: la misma banda).
B. Placa Transmisora (Placa 1)

• Función: Leer BMP280, empaquetar los datos y enviarlos por el APC220.
• Conexiones: BMP280 a pines I2C (A4/A5) y APC220 a pines Serial por Software.

Usaremos SoftwareSerial para liberar el Pin 0 y 1 del Arduino.
• APC220 TX \rightarrow Arduino Pin 10 (RX Software)

• APC220 RX \rightarrow Arduino Pin 11 (TX Software)
Código 4: Transmisor (BMP280 \rightarrow APC220)
Código Transmisor
#include <SoftwareSerial.h> // Para comunicación con el APC220
#include <Wire.h>
#include <Adafruit_BMP280.h>

// Pines para SoftwareSerial (APC220)
#define RX_APC 10
#define TX_APC 11
SoftwareSerial apc220(RX_APC, TX_APC); // RX, TX

// Sensor BMP280
Adafruit_BMP280 bmp;

void setup() {
 Serial.begin(9600); // Monitor Serie para depuración
 apc220.begin(9600); // Inicializa comunicación con APC220 a 9600 baudios

 // Inicialización del BMP280 (igual que en S2)
 if (!bmp.begin()) {
 Serial.println("Error BMP280. Deteniendo el Transmisor.");
 while(1);
 }
}

void loop() {
 float temperatura = bmp.readTemperature();
 float presion = bmp.readPressure() / 100.0F; // en hPa

 // Creamos la cadena de datos a enviar
 // Formato: T:XX.XX,P:YYYY.YY
 String dataString = "T:" + String(temperatura, 2) + ",P:" + String(presion, 2);

 // Enviamos la cadena por radio
 apc220.println(dataString);
 Serial.print("Enviando: ");
 Serial.println(dataString);

 delay(5000); // Envía datos cada 5 segundos
}
Abrir

C. Placa Receptora (Placa 2)

• Función: Recibir la cadena de datos del APC220 y parsearla (separar los valores) para
mostrarla en el Monitor Serie del PC.

• Conexiones: Usaremos el puerto Serial hardware del Arduino (pines 0/1) para el
APC220 y el Monitor Serie del PC para visualizar la salida (Esto requiere que el
APC220 se desconecte temporalmente al cargar el código).

• APC220 TX \rightarrow Arduino Pin 0 (RX Hardware)
• APC220 RX \rightarrow Arduino Pin 1 (TX Hardware)

NOTA IMPORTANTE: Para evitar conflictos, usaremos SoftwareSerial también en el
Receptor, conectando el APC220 a los pines 2 y 3. Esto permite usar el Serial
hardware (Monitor Serie) al mismo tiempo para la visualización.

• APC220 TX \rightarrow Arduino Pin 2 (RX Software)
• APC220 RX \rightarrow Arduino Pin 3 (TX Software)

Código 5: Receptor (APC220 \rightarrow Monitor Serie)
Código Receptor
#include <SoftwareSerial.h> // Para comunicación con el APC220

// Pines para SoftwareSerial (APC220)
#define RX_APC 2
#define TX_APC 3
SoftwareSerial apc220(RX_APC, TX_APC); // RX, TX

void setup() {
 Serial.begin(9600); // Monitor Serie (PC) a 9600 baudios
 apc220.begin(9600); // Comunicación APC220 a 9600 baudios

 Serial.println("Receptor APC220 Iniciado. Esperando datos...");
}

void loop() {
 // Verificamos si hay datos disponibles del módulo APC220
 if (apc220.available()) {
 // Leemos la línea completa que fue enviada por el transmisor
 String data = apc220.readStringUntil('\n');
 data.trim(); // Limpiamos espacios y saltos de línea

 if (data.length() > 0) {
 // 1. Mostrar la cadena recibida
 Serial.print("Recibido: ");
 Serial.println(data);

 // 2. Parsear la cadena (Extraer T y P)
 // Buscar el inicio y fin de los valores
 int indexT = data.indexOf("T:") + 2;
 int indexP = data.indexOf(",P:");
 int indexEnd = data.lastIndexOf(' '); // Fin de la cadena

 if (indexT > 1 && indexP > indexT) {
 String tempStr = data.substring(indexT, indexP);
 String presStr = data.substring(indexP + 3);

 float temperatura = tempStr.toFloat();
 float presion = presStr.toFloat();

 // 3. Mostrar los valores parseados
 Serial.print(" -> Temp Procesada: ");
 Serial.print(temperatura);
 Serial.println(" *C");
 Serial.print(" -> Pres. Procesada: ");
 Serial.print(presion);
 Serial.println(" hPa");
 Serial.println("-------------------------");
 }
 }
 }
 delay(100);
}

	Taller de Iniciación a Arduino
	Presentación
	SESIÓN 1: Introducción, IDE y Control de LEDs
	1. El Ecosistema Arduino
	A. La Placa Arduino Uno
	B. El Software (IDE)

	2. Control de Salidas Digitales (LED)

	SESIÓN 2: Adquisición de Datos (Sensor BMP280)
	3. Lectura de Datos de un Sensor
	A. Comunicación I2C
	B. Instalación de Librería

	SESIÓN 3: Comunicación Inalámbrica (APC220)
	4. Construcción del Sistema de Comunicación Radio
	A. El Módulo APC220
	B. Placa Transmisora (Placa 1)
	C. Placa Receptora (Placa 2)

