Taller de Iniciacion a Arduino
Presentacion

Este documento sirve como apoyo visual y repositorio de cédigo para las tres
sesiones del taller.

RESUMEN: https://gemini.google.com/share/efb3c0ea058e

SESION 1: Introduccién, IDE y Control de LEDs

1. El Ecosistema Arduino
A. La Placa Arduino Uno

La Placa Arduino Uno es el corazén de nuestro sistema. Es un microcontrolador que
puede ser programado para interactuar con el mundo fisico.

Pines Digitales (0-13): Se usan como entradas (ON/OFF) o salidas (HIGH/LOW). Como
salidas, el microcontrolador puede entregar una sefial de $5% voltios (HIGH) o $0%
voltios (LOW). Estos pines son fundamentales para controlar actuadores sencillos
como LEDs o motores, o para leer el estado de interruptores y pulsadores. Los pines
marcados con ~ (3,5, 6,9, 10, 11) soportan PWM (Pulse Width Modulation -
Modulaciéon por Ancho de Pulso), una técnica que permite simular una salida
analégica variando el tiempo que la sefial esta en HIGH, lo cual es ideal para
controlar el brillo de un LED o la velocidad de un motor.

Pines Analégicos (A0-A5): Estos pines estan disefiados para leer valores variables y
continuos, como el voltaje que proviene de sensores de temperatura, luz o
potenciometros. La placa utiliza un Conversor Analdgico-Digital (ADC) interno de
10% bits, lo que significa que traduce el voltaje de entrada (de 0 a $5% voltios) en
un valor entero que va de $0% a $1023%.

PB5/SCK
PB4/MISO

~ PB3/MOSI/OC2A
~PB2/0C1B
~PB1/0C1A
PBO0/ICP1/CLKO

1121

ATMEGA328P-PU

PD7/AIN1

~ PD7/AIN1

~ PD5/T1/0C0B
PD4/T0/XCK

~ PD3/INT1/0C2B
PD2/INTO
PD1/TXD
PDO/RXD

PCO/ADCO
PC1/ADC1
PC2/ADC2
PC3/ADC3
pc4/ADC4/SDA B
PC5/ADC5/SCL

Shutterstock Explorar
Este rango de $1024% valores nos da la precisién necesaria para percibir pequefios
cambios en las condiciones fisicas.

Pines de Alimentaciéon (Power): Ademas de recibir energia por el conector USB o de
barril, la placa proporciona voltajes regulados. 5V y 3.3V son cruciales para alimentar
otros componentes y sensores externos. GND (Tierra) es la referencia de $0% voltios
qgue debe ser comun a todos los elementos del circuito.

B. El Software (IDE)

El Entorno de Desarrollo Integrado (IDE) es donde escribimos y cargamos el c6digo
que define el comportamiento del microcontrolador. Un Sketch de Arduino siempre
debe contener las siguientes dos funciones estructurales:

. void setup(): Esta funcidn se ejecuta una sola vez inmediatamente después de que
la placa se enciende o se reinicia. Su propdsito es la configuracion inicial del
hardware y el software. Aqui es donde utilizamos la funcidon pinMode() para declarar
si un pin digital trabajarad como entrada (INPUT) o salida (OUTPUT), y donde
inicializamos las comunicaciones seriales (Serial.begin()) o las librerias que gestionan
sensores complejos. Si se omite, el microcontrolador no sabra cémo interactuar con
los pines externos.

. void loop(): Esta funcidn se ejecuta continuamente en bucle de forma indefinida,
justo después de que la funcién setup() ha finalizado su trabajo. Es el programa
principal, el corazdn de la I6gica de Arduino. En el loop() colocamos el cédigo que
gueremos que se repita constantemente: leer el estado de un sensor, procesar un
valor, tomar una decision (Iégica condicional) y, finalmente, activar un actuador. Un
ciclo de ejecucién en el loop() suele ser extremadamente rapido.

2. Control de Salidas Digitales (LED)

Tarea: Conectar y hacer parpadear un LED.

Componentes: 1 LED, 1 Resistencia (220 Ohm), Cables Jumper.
Esquema de Conexion:

El anodo (pata larga del LED) se conecta al Pin Digital (ej. Pin 13).

El catodo (pata corta del LED) se conecta a la Resistencia (220 Ohm).

La Resistencia se conecta al pin GND (Tierra).

Cddigo 1: Parpadeo Basico (Blink)
Este cédigo demuestra cdmo configurar el pin 13 como una salida y alternar su
estado.

// Definimos el pin donde esta conectado el LED

const int LED PIN = 13;

void setup() {
// Inicializa el pin 13 como una SALIDA (OUTPUT)
pinMode(LED_PIN, OUTPUT);

}

void loop() {
// Pone el Pin a ALTO (HIGH), encendiendo el LED
digitalWrite(LED_PIN, HIGH);
// Espera 1000 milisegundos (1 segundo)
delay(1000);

// Pone el Pin a BAJO (LOW), apagando el LED
digitalWrite(LED_PIN, LOW);
// Espera 1000 milisegundos (1 segundo)
delay(1000);
}
// Usamos el Pin 9, que es compatible con PWM (tiene el simbolo ~)

const int LED_PIN =9;

void setup() {

// No necesitamos pinMode() para analogWrite en pines PWM

}

Cédigo 2: Salida Analégica (Fading con PWM)

Usamos un pin PWM (~) para controlar el brillo del LED. analogWrite() acepta valores
de 0 (apagado) a 255 (maximo brillo).

Cddigo Fading PWM

void loop() {
// Incrementa el brillo (fade in)
for (int brillo = 0; brillo <= 255; brillo +=5) {
analogWrite(LED_PIN, brillo);
delay(30); // Pequefia pausa para ver el cambio

}

// Decrementa el brillo (fade out)
for (int brillo = 255; brillo >= 0; brillo -=5) {
analogWrite(LED_PIN, brillo);
delay(30);
}
}

SESION 2: Adquisicion de Datos (Sensor BMP280)

3. Lectura de Datos de un Sensor

Tarea: Conectar un sensor de Presion y Temperatura BMP280 y leer sus datos a
través de la comunicacién 12C, visualizandolos en el Monitor Serie.
A. Comunicacién I12C

El BMP280 usa el protocolo I12C, que solo necesita dos cables de datos mas
alimentacién:

SDA (Serial Data): Linea de datos. En Arduino Uno, se conecta al pin A4.
SCL (Serial Clock): Linea de reloj. En Arduino Uno, se conecta al pin A5.
Esquema de Conexién (BMP280 12C):

| Pin Arduino Uno | Pin BMP280 | Funcién |

e
| 5V | VCC | Alimentacién |
| GND | GND | Tierra |

| A4 | SDA | Datos I12C |

| A5 | SCL | RelojI2C |

B. Instalacion de Libreria

Antes de compilar, debemos instalar la libreria "Adafruit BMP280" desde el Gestor de

Librerias del Arduino IDE.

Cédigo 3: Lectura del BMP280 y Monitor Serie

Este cédigo inicializa la comunicacion Serial y 12C, lee los datos del sensor y los
imprime en el Monitor Serie.

Cédigo Lectura BMP280

// Incluimos las librerias necesarias para I2Cy el sensor
#include <Wire.h> // Para comunicacion 12C

#include <Adafruit BMP280.h> // Para el sensor BMP280

// Creamos un objeto para manejar el sensor
Adafruit_BMP280 bmp; // Usaremos la direccion I2C por defecto

void setup() {
// Inicializamos la comunicacion Serial para enviar datos al PC

Serial.begin(9600);
while (!Serial); // Espera a que el Monitor Serie esté abierto (solo para placas con

USB nativo)
Serial.printIn(F("Prueba de Sensor BMP280"));

// Intentamos inicializar el sensor

if (lbmp.begin()) {
Serial.printIn(F("iNo se ha encontrado un sensor BMP280 valido!"));
while (1) delay(10); // Bucle infinito si hay error

}

// Configuramos el modo de muestreo (opcional, por defecto es ok)
bmp.setSampling(Adafruit_ BMP280::MODE_NORMAL, /* Modo Normal (operacién

continua) */

Adafruit_BMP280::SAMPLING_X2, /* 2x muestreo de Temperatura */
Adafruit BMP280::SAMPLING_X16, /* 16x muestreo de Presion */
Adafruit_ BMP280::FILTER_X16, /* Filtrado de 16 */
Adafruit_BMP280::STANDBY_MS_500); /* Tiempo de espera */

void loop() {
// Leemos y mostramos los valores
Serial.print(F("Temperatura = "));
Serial.print(bmp.readTemperature()); // Lee en grados Celsius
Serial.printIn(F(" *C"));

Serial.print(F("Presion ="));
Serial.print(bmp.readPressure() / 100.0F); // Convierte de Pascal a hPa (milibares)
Serial.printin(F(" hPa"));

Serial.printin();
delay(2000); // Lee cada 2 segundos
}

SESION 3: Comunicacion Inalambrica (APC220)

4. Construccion del Sistema de Comunicacion Radio

Tarea: Configurar dos placas Arduino con modulos APC220 para que una envie los
datos del BMP280 y la otra los reciba y muestre.
A. El Médulo APC220

El APC220 permite la comunicacion Serial inaldambrica. Necesita ser conectado a un
adaptador USB/TTL para el PCy al Arduino para la comunicacion.

Configuracion Previa: Antes de conectar al Arduino, se recomienda usar el software
del fabricante para verificar que ambos mdédulos tengan la misma configuracion (e;.
Tasa de Baudios: 9600, Frecuencia: la misma banda).

B. Placa Transmisora (Placa 1)

* Funcién: Leer BMP280, empaquetar los datos y enviarlos por el APC220.

« Conexiones: BMP280 a pines I2C (A4/A5) y APC220 a pines Serial por Software.
Usaremos SoftwareSerial para liberar el Pin 0y 1 del Arduino.

« APC220 TX \rightarrow Arduino Pin 10 (RX Software)

« APC220 RX \rightarrow Arduino Pin 11 (TX Software)
Codigo 4: Transmisor (BMP280 \rightarrow APC220)
Cddigo Transmisor
#include <SoftwareSerial.h> // Para comunicacién con el APC220
#include <Wire.h>
#include <Adafruit_BMP280.h>

// Pines para SoftwareSerial (APC220)

#define RX_APC 10

#define TX_APC 11

SoftwareSerial apc220(RX_APC, TX_APC); // RX, TX

// Sensor BMP280
Adafruit_BMP280 bmp;

void setup() {
Serial.begin(9600); // Monitor Serie para depuracion
apc220.beqin(9600); // Inicializa comunicacién con APC220 a 9600 baudios

// Inicializacién del BMP280 (igual que en S2)
if (lbmp.begin()) {
Serial.printIin("Error BMP280. Deteniendo el Transmisor.");
while(1);
}
}

void loop() {
float temperatura = bmp.readTemperature();
float presion = bmp.readPressure() / 100.0F; // en hPa

// Creamos la cadena de datos a enviar
// Formato: T:XX.XX,P:YYYY.YY
String dataString = "T:" + String(temperatura, 2) + ",P:" + String(presion, 2);

// Enviamos la cadena por radio
apc220.printin(dataString);
Serial.print("Enviando: ");
Serial.printin(dataString);

delay(5000); // Envia datos cada 5 sequndos
}

C. Placa Receptora (Placa 2)

Funcidn: Recibir la cadena de datos del APC220 y parsearla (separar los valores) para
mostrarla en el Monitor Serie del PC.

Conexiones: Usaremos el puerto Serial hardware del Arduino (pines 0/1) para el
APC220y el Monitor Serie del PC para visualizar la salida (Esto requiere que el
APC220 se desconecte temporalmente al cargar el cédigo).

APC220 TX \rightarrow Arduino Pin 0 (RX Hardware)

APC220 RX \rightarrow Arduino Pin 1 (TX Hardware)

NOTA IMPORTANTE: Para evitar conflictos, usaremos SoftwareSerial también en el
Receptor, conectando el APC220 a los pines 2 y 3. Esto permite usar el Serial
hardware (Monitor Serie) al mismo tiempo para la visualizacién.

APC220 TX \rightarrow Arduino Pin 2 (RX Software)

APC220 RX \rightarrow Arduino Pin 3 (TX Software)

Cédigo 5: Receptor (APC220 \rightarrow Monitor Serie)

Cédigo Receptor

#include <SoftwareSerial.h> // Para comunicacion con el APC220

// Pines para SoftwareSerial (APC220)

#define RX_APC 2

#define TX_APC 3

SoftwareSerial apc220(RX_APC, TX_APC); // RX, TX

void setup() {
Serial.begin(9600); // Monitor Serie (PC) a 9600 baudios
apc220.beqin(9600); // Comunicacion APC220 a 9600 baudios

Serial.printIin("Receptor APC220 Iniciado. Esperando datos...");
}

void loop() {
// Verificamos si hay datos disponibles del médulo APC220
if (apc220.available()) {
// Leemos la linea completa que fue enviada por el transmisor
String data = apc220.readStringUntil("\n");
data.trim(); // Limpiamos espacios y saltos de linea

if (data.length() > 0) {
// 1. Mostrar la cadena recibida
Serial.print("Recibido: ");
Serial.printin(data);

// 2. Parsear la cadena (Extraer Ty P)

// Buscar el inicio y fin de los valores

int indexT = data.indexOf("T:") + 2;

int indexP = data.indexOf(",P:");

int indexEnd = data.lastIndexOf(' '); // Fin de la cadena

if (indexT > 1 && indexP > indexT) {
String tempStr = data.substring(indexT, indexP);
String presStr = data.substring(indexP + 3);

float temperatura = tempStr.toFloat();
float presion = presStr.toFloat();

// 3. Mostrar los valores parseados
Serial.print(" -> Temp Procesada: ");
Serial.print(temperatura);
Serial.printIn(" *C");
Serial.print(" -> Pres. Procesada: ");
Serial.print(presion);
Serial.printin(" hPa");
Serial.printIn(" ");
}
}
}
delay(100);
}

	Taller de Iniciación a Arduino
	Presentación
	SESIÓN 1: Introducción, IDE y Control de LEDs
	1. El Ecosistema Arduino
	A. La Placa Arduino Uno
	B. El Software (IDE)

	2. Control de Salidas Digitales (LED)

	SESIÓN 2: Adquisición de Datos (Sensor BMP280)
	3. Lectura de Datos de un Sensor
	A. Comunicación I2C
	B. Instalación de Librería

	SESIÓN 3: Comunicación Inalámbrica (APC220)
	4. Construcción del Sistema de Comunicación Radio
	A. El Módulo APC220
	B. Placa Transmisora (Placa 1)
	C. Placa Receptora (Placa 2)

