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TABLA DE DERIVADAS 
 
NOTA: u y v representan, cada una, una expresión en función de x 

 

 
FUNCIÓN DERIVADA Ejemplos 
Constante 
y = k y’ = 0 y = 5 y' = 0 
Identidad 
y = x y’ = 1 y = 4x y’ = 4 
Potenciales 
y = un y’ = nun–1u’ y = (2x+7)4 y’ = 8(2x+7)3 
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Exponenciales 
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Trigonométricas 
y = sen u y’ = u’ cos u y = sen 2x y’ = 2 cos 2x 
y = cos u y’ = –u’ sen u y = cos x3 y’ = –3x2 sen x3 
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y = sec u y’ = u’ sec u tg u y’ = sec 3x y’ = 3 sec 3x tg 3x 
y = cosec u y’ = –u’ cosec u cotg u y’ = cosec x2 y’ = –2x cosec x2 cotg x2 
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PROPIEDADES BÁSICAS 
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TABLA DE INTEGRALES INMEDIATAS 
 

NOTA: u y v representan expresiones que son funciones de x 

 

INTEGRALES INMEDIATAS Ejemplos 
Potenciales 
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Exponenciales y logarítmicas 
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Trigonométricas 
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PROPIEDADES BÁSICAS 

∫∫ = dxukdxku    ∫∫∫ ±=± dxvdxudxvu    )(  

Integración por partes: 

∫∫ −= duvuvdvu     
Cambio de variable: 

∫∫ = dttfdxuuf )(')( , llamando t = u(x) 


