REGLA DE L'HOPITAL

La regla de L'Hépital la utilizamos para resolver limites con indeterminaciones del tipo 0/0 y /e,
El resto de indeterminaciones ©=w, 0- ©, 1=, «0 00|as trasformamos en 0/0 0 en «/« y las

resolvemos también por L "Hbpital.
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Raeadgla de L " HSpital
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REGLA DE L'HOPITAL

Indeterminaciéon «o=«

Transtormamos |la expresidan oo — oo en b
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reducimos a comun denominador.
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Aplicamos las propiedades de los logaritmos.
La resta de logantmos la pasamos a cocients.
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REGLA DE ’HOPITAL
Indeterminacion 0-«
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REGLA DE L'HOPITAL

Indeterminaciones de tipo = 1, <%, 0°

Para resolver estas indeterminaciones tomamos logaritmos neperianos.

El logaritmo de una potencia es igual al exponente por el logaritmo de la base = In a® = b In a. De

esta forma conseguimos bajar el exponente y resolver el limite.
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REGLA DE L'HOPITAL

Indeterminacién 0°
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- Aplicamos logaritmos en los dos lados para bajar
la = del exponente .
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