LECCION 5. Base de vectores.

COMBINACION LINEAL DE DOS VECTORES: Se dice que un vector 0 es combinacién lineal (CL) de
los vectores y Usi:
W=\d + 87

Para ciertos escalares \, 5 € R.

EJEMPLO COMBINACION LINEAL: Dados los vectores i/ = (1,-1)y v = (2,3), un ejemplo de
combinacion lineal seria:

W =317 +27 = (3,-3) + (4,6) = (7,3)

EJEMPLO 1. Escribir el vector § = (7,1) como combinacion lineal de los vectoresu = (2,3) y
U = (—3,5). Representar grdficamente la combinacion lineal.

w=Au+v=(7,1) = A(2,-3)+ 3(3,5) = (7,1) = (2A — 38, 3X\+5))
De donde se obtiene el sistema :

2A-38=7 % [10A—158=35
BA+58=1 7 | 9A+158=3

Al restar ambas ecuaciones se obtiene:
19A =38 = A =2

Para hallar Busamos sustituimos el valor obtenido de )\ en la primera ecuacioon:
2:2-30=7T=4-3=7= -30=3 = f=-1

Solucion:
W=2U—7

BASE: Se dice que dos vectores U y 7 forman una base de vectores si cualquier otro vector W es
combinacién lineal de y  vectores U y o

W=\ + 87V \ B eR.

A los valores escalares A y 3 se les llama coordenadas de  en la base U, V.



PROPIEDAD: 7/ y 7 forman un base si y solo si :

1) W # ﬁ, o £ ﬁ (No nulos)
2) W h's K (No paralelos)

Un ejemplo de base podria ser el de la imagen:

Demostracion

Dados dos vectores U y 7 no nulos y no paralelos, vamos a ver como un tercer vector W se puede
escribir como CL de o y7

Tomamos los tres vectores referenciados al origen de coordenadas y seguimos los siguientes pasos:
1) Dibujamos los ejes detinidos por lo vectores U y .

2) Trazamos las paralelas a dichos ejes pasando por el extremo de .

3) Dibujamos los puntos A y B que se obtienen como intersecciéon de los ejes y las paralelas dibujadas.

4) Como O y A se encuentran sobre el eje definido por 7 se va a tener que OA va a ser proporcional a
v y por lo tanto
—
OA = A\ para un cierto escalar \.
De la misma manera se deduce que:

O? — B para un cierto escalar 3.
5) Claramente, W=\ + 67.




EJEMPLO 2: Comprobar que los vectores i = (4,5) ¥ v = (2,3) forman una base y expresar
W = (4,—2) como una CL del y ' . Escribir las coordenadas de S en la based, U .
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De entre todas las bases ortonormales la base mas importante de todas es

la base canodnica dada por los vectores unitarios definidos por los ejes x
coordenados: .
i=01) |-
7 =(1,0)7 =01 B
i=(1,0)
Las coordenadas de un vector ¥ en la base canénica son lo que

normalmente llamamos coordenadas
— —
U = Up @+ Uy ] =uz(1,0) +uy(0,1) = (ug,0) + (0, uy) = (Uz, uy)

Por ejemplo:

@=(3,2)=31+2]

.

EJERCICIOS

1. ¢Forman ¥ = (—2,1)y ¥ = (4, —2) una base?

2. Dados los vectores 7 = (—2,3)y ¥/ = (5, 4) se pide:
a. Razonar que forman una base.
b. Obtener las coordenadas de @ = (12, 5) en la base anterior.
c. Explicar graficamente la situacién.

3. Dados los vectores i1=(3,4) y v=(—2,3) se pide:
a) Razonar que forman una base.
b) Obtener las coordenadas de w=(—12,1) en la base anterior. (SOL: -2 y 3)
c) Explicar graficamente la situacion.
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LECCION 5. Base de vectares.
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LECCIÓN 5. Base de vectores. 





COMBINACIÓN LINEAL DE DOS VECTORES: Se dice que un vector TexMaths12§display§\overrightarrow{w}§svg§600§FALSE§         es combinación lineal (CL) de los vectores TexMaths12§display§\overrightarrow{u}§svg§600§FALSE§         y TexMaths12§display§\overrightarrow{v}§svg§600§FALSE§        si: 

TexMaths12§display§\overrightarrow{w}=\lambda \overrightarrow{u}+ \beta \overrightarrow{v}§svg§600§FALSE§                            

Para ciertos escalares TexMaths12§display§ \lambda §svg§600§FALSE§    , TexMaths12§display§\beta \in \mathbb{R}§svg§600§FALSE§        .



EJEMPLO COMBINACIÓN LINEAL: Dados los vectores TexMaths12§display§\overrightarrow{u}=(1,-1)§svg§600§FALSE§                       y TexMaths12§display§\overrightarrow{v}=(2,3)§svg§600§FALSE§                     , un ejemplo de combinación lineal sería:

 

TexMaths12§display§\overrightarrow{w}=3\overrightarrow{u}+2\overrightarrow{v}=(3,-3)+(4,6)=(7,3)§svg§600§FALSE§                                                                  







EJEMPLO 1. Escribir el vector TexMaths12§display§\overrightarrow{w}=(7,1)§svg§600§FALSE§                     como combinación lineal de los vectoresTexMaths12§display§\overrightarrow{u}=(2,3)§svg§600§FALSE§                     y TexMaths12§display§\overrightarrow{u}=(-3,5)§svg§600§FALSE§                      .  Representar gráficamente la combinación lineal.

----------------------------------------------------------------------------------------------------------------------------------



TexMaths12§display§\[
\vec{\mathbf{w}} = \lambda \,\vec{\mathbf{u}} + \beta \,\vec{\mathbf{v}}

\Rightarrow
(7,1)=\lambda(2,-3)+\beta(3,5)
\Rightarrow
(7,1)=(2\lambda-3\beta,\;3\lambda+5\beta)
\]
§svg§600§TRUE§                                                                                                      



De donde se obtiene el sistema :



TexMaths12§latex§\[
\left\{
\begin{aligned}
2\lambda - 3\beta &= 7 \\
3\lambda + 5\beta &= 1
\end{aligned}
\right
\begin{array}{c} \overset{\cdot 5}{\rightarrow }\\ \underset{\cdot 3}{\rightarrow}\end{array}
\left\{
\begin{aligned}
10\lambda - 15\beta &= 35 \\
9\lambda + 15\beta &= 3
\end{aligned}
\right
\]§svg§600§TRUE§                                                                                



Al restar ambas ecuaciones se obtiene:

TexMaths12§display§\[

19\lambda=38 \;\Rightarrow\; \lambda=2

\]§svg§600§TRUE§                    



Para hallar TexMaths12§display§\(\beta\) §svg§600§TRUE§  usamos sustituimos el valor obtenido de TexMaths12§display§\lambda§svg§600§TRUE§   en la primera ecuacioón:



TexMaths12§display§\[

2\cdot 2 - 3\beta = 7 \;\Rightarrow\; 4 - 3\beta = 7 \;\Rightarrow\; -3\beta = 3 \;\Rightarrow\; \beta = -1

\]§svg§600§TRUE§                                                    



Solución:

TexMaths12§display§\[

\vec{w}=2\vec{u}-\vec{v}

\]

§svg§600§TRUE§                  





BASE: Se dice que dos vectores TexMaths12§display§\overrightarrow{u}§svg§600§FALSE§         y TexMaths12§display§\overrightarrow{v}§svg§600§FALSE§         forman una base de vectores si cualquier otro vector TexMaths12§display§\overrightarrow{w}§svg§600§FALSE§         es combinación lineal de  TexMaths12§display§\overrightarrow{u}§svg§600§FALSE§         y TexMaths12§display§\overrightarrow{v}§svg§600§FALSE§        .vectores TexMaths12§display§\overrightarrow{u}§svg§600§FALSE§         y TexMaths12§display§\overrightarrow{v}§svg§600§FALSE§        



TexMaths12§display§\overrightarrow{w}=\lambda \overrightarrow{u}+ \beta \overrightarrow{v}§svg§600§FALSE§                             TexMaths12§display§ \lambda §svg§600§FALSE§    , TexMaths12§display§\beta \in \mathbb{R}§svg§600§FALSE§        .



A los valores escalares TexMaths12§display§ \lambda §svg§600§FALSE§     y TexMaths12§display§\beta§svg§600§FALSE§     se les llama coordenadas de  TexMaths12§display§\overrightarrow{w}§svg§600§FALSE§         en la base TexMaths12§display§\overrightarrow{u}§svg§600§FALSE§        , TexMaths12§display§\overrightarrow{v}§svg§600§FALSE§        .



PROPIEDAD: TexMaths12§display§\overrightarrow{u}§svg§600§FALSE§         y TexMaths12§display§\overrightarrow{v}§svg§600§FALSE§         forman un base si y solo si :



		 TexMaths12§display§\overrightarrow{u} \ne \overrightarrow{0}§svg§600§FALSE§                  ,  TexMaths12§display§\overrightarrow{v} \ne \overrightarrow{0}§svg§600§FALSE§                   (No nulos)  



		 TexMaths12§display§\overrightarrow{u}\nparallel \overrightarrow{v}§svg§600§FALSE§                 (No paralelos)  









Un ejemplo de base podría ser el de la imagen:







Demostración



Dados dos vectores TexMaths12§display§\overrightarrow{u}§svg§600§FALSE§         y TexMaths12§display§\overrightarrow{v}§svg§600§FALSE§         no nulos y no paralelos, vamos a ver como un tercer vector TexMaths12§display§\overrightarrow{w}§svg§600§FALSE§         se puede escribir como CL de  TexMaths12§display§\overrightarrow{u}§svg§600§FALSE§         y TexMaths12§display§\overrightarrow{v}§svg§600§FALSE§        



Tomamos los tres vectores referenciados al origen de coordenadas y seguimos los siguientes pasos:

1) Dibujamos los ejes definidos por lo vectores TexMaths12§display§\overrightarrow{u}§svg§600§FALSE§         y TexMaths12§display§\overrightarrow{v}§svg§600§FALSE§         .

2) Trazamos las paralelas a dichos ejes pasando por el extremo de TexMaths12§display§\overrightarrow{w}§svg§600§FALSE§        .

3) Dibujamos los puntos A y B que se obtienen como intersección de los ejes y las paralelas dibujadas.

4) Como O y A se encuentran sobre el eje definido por TexMaths12§display§\overrightarrow{u}§svg§600§FALSE§         se va a tener que TexMaths12§display§\overrightarrow{OA}§svg§600§FALSE§           va a ser proporcional a TexMaths12§display§\overrightarrow{u}§svg§600§FALSE§         y por lo tanto

 TexMaths12§display§\overrightarrow{OA}=\lambda \overrightarrow{u}§svg§600§FALSE§                     para un cierto escalar TexMaths12§display§\lambda§svg§600§FALSE§    .  

 De la misma manera se deduce que:

TexMaths12§display§\overrightarrow{OB}=\beta \overrightarrow{v}§svg§600§FALSE§                       para un cierto escalar TexMaths12§display§\beta§svg§600§FALSE§    .  

5) Claramente, TexMaths12§display§\overrightarrow{w}=\lambda \overrightarrow{u}+ \beta \overrightarrow{v}§svg§600§FALSE§                             .





















EJEMPLO 2:  Comprobar que los vectores TexMaths12§display§\overrightarrow{u}=(4,5)§svg§600§FALSE§                     y TexMaths12§display§\overrightarrow{v}=(2,3)§svg§600§FALSE§                      forman una base y expresar TexMaths12§display§\overrightarrow{w}=(4,-2)§svg§600§FALSE§                       como una CL de TexMaths12§display§\overrightarrow{u}§svg§600§FALSE§         y TexMaths12§display§\overrightarrow{v}§svg§600§FALSE§         . Escribir las coordenadas de TexMaths12§display§\overrightarrow{w}§svg§600§FALSE§         en la base TexMaths12§display§\overrightarrow{u}§svg§600§FALSE§        , TexMaths12§display§\overrightarrow{v}§svg§600§FALSE§          .

----------------------------------------------------------------------------------------------------------------------------------



 CALCULADORA DE COORDENADAS    





BASE ORTOGONAL: Se dice que una base es ortogonal si los vectores son perpendiculares(ortogonales). 





BASE ORTONORMAL: Una base se dice ortonormal si es ortogonal y además los vectores son unitarios (tienen módulo 1)







		BASE ORTOGONAL
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De entre todas las bases ortonormales la base más importante de todas es la base canónica dada por los vectores unitarios definidos por los ejes coordenados:



TexMaths12§display§\overrightarrow{i}=(1,0)§svg§600§FALSE§                     TexMaths12§display§\overrightarrow{j}=(0,1)§svg§600§FALSE§                    





Las coordenadas de un vector TexMaths12§display§\overrightarrow{u}§svg§600§FALSE§         en la base canónica son lo que normalmente llamamos coordenadas



TexMaths12§display§\overrightarrow{u}=u_x \overrightarrow{i}+u_y \overrightarrow{j} =u_x(1,0)+u_y(0,1)=(u_x,0)+(0,u_y)=(u_x,u_y)§svg§600§FALSE§                                                                                                            



Por ejemplo:











EJERCICIOS



		¿Forman TexMaths12§display§\overrightarrow{u}=(-2,1)§svg§600§FALSE§                       y TexMaths12§display§\overrightarrow{v}=(4,-2)§svg§600§FALSE§                       una base?







		Dados los vectores  TexMaths12§display§\overrightarrow{u}=(-2,3)§svg§600§FALSE§                       y TexMaths12§display§\overrightarrow{v}=(5,4)§svg§600§FALSE§                     se pide:

		Razonar que forman una base.



		Obtener las coordenadas de TexMaths12§display§\overrightarrow{w}=(12,5)§svg§600§FALSE§                       en la base anterior.



		Explicar graficamente la situación. 











		Dados los vectores fórmula y fórmula se pide:





		Razonar que forman una base.



		Obtener las coordenadas de fórmula en la base anterior. (SOL: -2 y 3)



		Explicar graficamente la situación. 











