FyQ 1º Bach.-1ª Evaluación

Pregunta 1: Calcula la densidad del nitrógeno cuando se halla a una temperatura de 25º C y una presión de 0,75 atm. Compara la densidad con la del mismo gas cuando se halla a la misma temperatura, pero a una presión de 1,5 atm.

Pregunta 2: Calcula la cantidad de átomos de mercurio si este se encuentra ocupando un volumen de 2100 cm³ a 40º C y una presión de 0,8 Pa.

Pregunta 3: Nombra los siguientes compuestos.

a) OsO_2

d) MgO_2

b) AsH₃

e) $Fe_2(HPO_4)_3$

c) P_2O_5

Pregunta 4: Calcula el volumen de ácido sulfúrico concentrado al 98% en masa y de densidad 1,84 g/mL necesario para preparar 100 m

L una disolución de 1,5 M.

Pregunta 5: Ajusta las siguientes reacciones:

I.
$$FeS + O_2 \rightarrow Fe_2O_3 + SO_2$$

II.
$$Na + H_2O \rightarrow NaOH + H_2$$

III.
$$H_2S + O_2 \rightarrow SO_2 + H_2O$$

IV.
$$\left(NH_4\right)_2SO_4 + NaOH \rightarrow Na_2SO_4 + NH_3 + H_2O$$

V.
$$KClO_3 \rightarrow KCl + O_2$$

Pregunta 6: Calcula a qué temperatura será espontánea la reacción de combustión del metano para formar dióxido de carbono y agua.

$$CH_4$$
: ΔH_f° =-74,8 kJ/mol; S° =186,3 J/mol·K O_2 : S° =205,1 J/mol·K

 CO_2 : ΔH_f° =-383,5 kJ/mol; S° =213,7 $J/mol \cdot K$ H_2O : ΔH_f° =-285,5 kJ/mol; S° =69,9 $J/mol \cdot K$ **Pregunta 7:** Calcula la masa de hidróxido de magnesio necesaria para neutralizar 150 mL de ácido nítrico de concentración 1, 5 M. En la reacción se forman nitrato de magnesio y agua.

Pregunta 8: Calcula el volumen formado de dióxido de carbono, medido a 25°C y 1,15 atm de presión cuando reaccionan 50 g de carbonato cálcico con 75 g de ácido sulfurico. En la reacción se forma dióxido de carbono, agua y sulfato cálcico.

Pregunta 9: Calcula la pureza de un pedazo de hierro de 60 g si hicieron falta 0,5 L de ácido clorhídrico 5 M para convertir todo el hierro en cloruro de hierro (III) e hidrógeno molecular (H₂).

Pregunta 10: Calcula la variación de energía interna de la reacción de combustión del propano junto con el oxigeno, para generar dióxido de carbono y agua.

 C_3H_8 ; ΔH_f °=-183,8 kJ/mol