LA FUERZA ELÉCTRICA

LA FUERZA ELÉCTRICA

- La carga eléctrica es debida a los electrones, partículas cargadas negativamente:
 - Una ausencia de electrones provoca una carga positiva
 - Un exceso de electrones provoca una carga negativa
- La carga eléctrica se mide en culombios (C)
 - Un electrón tiene una carga de 1,6·10⁻¹⁹ C

LA LEY DE COULOMB

- Las cargas con mismo signo sufren una fuerza de repulsión entre ellas.
- Las cargas de distinto signo sufren una fuerza de atracción.
- La magnitud de esa fuerza viene determinada por la ley de Coulomb:

$$F_e = k \cdot q_1 \cdot q_2/r^2$$

k=9·10⁹ Nm²/C²

F_e: fuerza; q₁,q₂: cargas; r: distancia entre cargas

FUERZA GRAVITATORIA VS ELÉCTRICA

La fuerza gravitatoria cumple una fórmula similar a la eléctrica:

$$F_g = G \cdot m_1 \cdot m_2 / r^2$$

 $G = 6,67 \cdot 10^{-11} \text{ Nm}^2 / \text{kg}^2$

- Sin embargo hay muchas diferencias entre ambas fuerzas:
 - La fuerza eléctrica es mucho más fuerte que la gravitatoria, pero nunca se concentran tantas cargas
 - La fuerza eléctrica puede ser atractiva o repulsiva, mientras que la fuerza gravitatoria siempre es atractiva, ya que no existen cargas negativas
 - La fuerza gravitatoria no depende del medio, mientras que la eléctrica si.