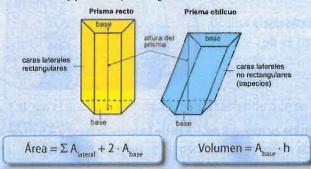
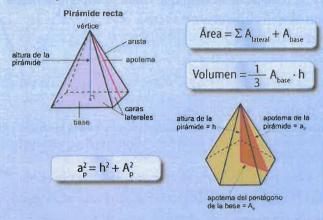
GEOMETRÍA DEL ESPACIO

POLIEDROS


Poliedro: parte del espacio delimitada por superficies planas.

Teorema de Euler:


$$C+V=A+2$$

Clasificación de poliedros:

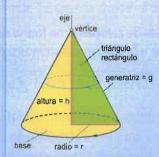
Prisma: poliedro limitado por dos polígonos iguales y paralelos, llamados **bases**, y por varios paralelogramos, llamados **caras laterales**.

Pirámide: poliedro delimitado por un polígono liamado base y por varios triángulos que concurren en un punto liamado vértice.

Poliedro regular: poliedro cuyas caras son polígonos regulares iguales y cuyos ángulos diedros son todos iguales.

Poliedro	Caras	Vértices	Aristas	
Tetraedro	4 triángulos equiláteros	4	6	
Cubo	6 cuadrados	8	12	
Octaedro	8 triángulos equiláteros	6	12	
Dodecaedro	12 pentágonos regulares	20	30	
Icosaedro	20 triángulos equiláteros	12	30	

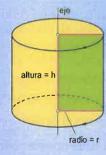
CUERPOS REDONDOS


Esfera: lugar geométrico de los puntos del espacio que equidistan de un punto llamado **centro**.

$$\text{Área} = 4 \cdot \pi \cdot r^2$$

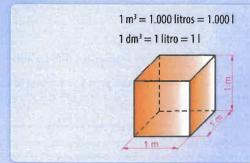
Volumen =
$$\frac{4}{3} \pi \cdot r^3$$

Cono: sólido de revolución generado por el giro de un triángulo rectangulo alrededor de uno de sus catetos.



$$\text{Área} = \pi \cdot \mathbf{r} \cdot \mathbf{g} + \pi \cdot \mathbf{r}^2$$

Volumen =
$$\frac{1}{3} \pi \cdot r^2 \cdot h$$


$$g = \sqrt{h^2 + r^2}$$

Cilindro: sólido de revolución que se obtiene mediante el giro de una superficie rectangular alrededor de uno de sus lados.

$$\text{Área} = 2\pi \cdot \mathbf{r}^2 + 2\pi \cdot \mathbf{r} \cdot \mathbf{h}$$

Volumen =
$$A_{base} \cdot h = \pi \cdot r^2 \cdot h$$

