TEMA 7: CÁLCULO DE DERIVADAS.

1.- Utilizando la fórmula para el cociente de funciones, hallar la derivada simplificada de las siguientes funciones:

a)
$$y = \frac{x^2 - 5}{x + 2}$$
 c) $y = \frac{x + 2}{x^2 - 5}$ **d)** $y = \frac{3x}{(2x^2 + 1)^2}$ **e)** $y = \frac{x^2}{\sqrt{x + 1}}$

d)
$$y = \frac{3x}{(2x^2 + 1)^2}$$

e)
$$y = \frac{x^2}{\sqrt{x+1}}$$

(Sol: a)
$$y = \frac{x^2 + 4 + 5}{(x + 2)^2}$$
;

c)
$$y = -\frac{x^2 + 4 + 5}{(x^2 - 5)^2}$$
; d) $y' = \frac{3 - 18x^2}{(2x^2 + 1)^2}$; e) $y' = \frac{3x^2 + 4x}{2(x + 1)\sqrt{x + 1}}$

2 - Derivar las siguientes funciones, utilizando en cada caso el procedimiento más apropiado, y simplificar:

a)
$$y = \frac{x^2 + x^2}{x^2}$$

a)
$$y = \frac{x^2 + 1}{x^2}$$
 b) $y = \frac{2x^2 - 3x + 1}{x}$ **c)** $y = \frac{x + 1}{1 - x}$ **d)** $y = \frac{x^2}{\sqrt{x}}$

c)
$$y = \frac{x+1}{1-x}$$

d)
$$y = \frac{x^2}{\sqrt{x}}$$

e)
$$y = \frac{3x^4 - 2x^2 + 2}{2}$$

f)
$$y = (3x^2 + 5)^5$$
 g) $y = \frac{2x}{x^2 + x + 1}$

g)
$$y = \frac{2x}{x^2 + x + 1}$$

(Sol: a)
$$y' = \frac{-2}{x^2}$$
; b) $y' = \frac{2x^2 - 1}{x^2}$; c) $y' = \frac{2}{(t - x)^2}$; d) $y' = \frac{3\sqrt{x}}{2}$; e) $y' = 6x^3 - 2x$; f) $y' = 30x(3x^2 + 5)^4$

9)
$$y' = \frac{-2x^2 + 2}{(x^2 + x + 1)^2}$$

3 .- Halla la derivada de las siguientes funciones:

a)
$$f(x) = 3^{2x}$$
;

b)
$$f(x) = e^{5x}$$

a)
$$f(x) = 3^{2x}$$
; b) $f(x) = e^{5x}$; c) $f(x) = e^{-3x^2 + 2x}$; d) $f(x) = xe^x$

d)
$$f(x) = x \cdot e^{-x}$$

4.- Halla la derivada de las siguientes funciones:

a)
$$f(x) = \log(2x)$$

b)
$$f(x) = \log(x^3)$$

a)
$$f(x) = \log(2x)$$
; b) $f(x) = \log(x^3)$; c) $f(x) = \ln(5x^2 + 1)$; d) $f(x) = x \cdot \ln x$.

- 5.- Para cada una de las siguientes funciones halla su derivada y, después, da respuesta a la pregunta que se hace:
 - a) $f(x) = x^3 \frac{1}{2}x^2 2x + 3$. Da un punto en el que la derivada valga 2.
 - b) $f(x) = \frac{2x}{x^2 + 4}$. ¿En qué puntos la derivada vale 0?
 - c) $f(x) = \sqrt{x^2 4x + 5}$. ¿Para qué valores de x la derivada es negativa?
 - d) $f(x) = xe^{x^2-1}$. ¿Decrece en algún punto?
- 6.- Aplicando derivadas comprueba que el vértice de la parábola y=ax²+ bx+ c se da en el punto de abscisa x=-b/2a.
- 7.- Estudia los intervalos de crecimiento y decrecimiento y los máximos y mínimos de la función $f(x) = 2x^3 6x$.
- 8.- Determina los intervalos de crecimiento y decrecimiento y los máximos y mínimos de la función $f(x)=3x^2-2x^3$. Da algunos de sus puntos, entre ellos los de corte de la gráfica con los ejes y haz un esbozo de su gráfica.
- 9.- Halla los intervalos de crecimiento y de decrecimiento de $f(x) = \frac{3x}{x^2 + 1}$. ¿Tiene máximos o mínimos?.