

IES Plurilíngüe Fontexería MATEMÁTICAS 1º BACH CCSS

Nombre____

2º Evaluación RECUPERACIÓN 2ª EVAL

26/04/2022

"No hay que temer a nada en la vida, sólo tratar de comprender". Marie Curie (1867-1934).

Primera mujer y cuarta persona con dos premios Nobel (Física y Química).

TIEMPO: 60 min PUNTUACIÖN MÁX.: 10

1. (2,75 pto) Resolver las siguientes ecuaciones:

a)
$$(1,25) \ 2^{x+2} + 2^x + 2^{x-1} = 88$$
 Resolvemos la ecuación exponencial: $2^x \cdot 2^2 + 2^x + 2^x = 88 = 7$ $2^x \cdot 4 + 1 + 1 = 2 = 88 = 7$ $2^x \cdot 4 + 1 + 1 = 2 = 88 = 7$ $2^x \cdot 4 = 7$ $2^x \cdot 4$

b)
$$(1,5)$$

$$\begin{cases} 2x - y - 1 = 0 \\ x^2 - 7 = y + 2 \end{cases}$$

Resuduo por el métado de igualación.

a)
$$y = 2x - 1$$

 $y = x^2 - 9$

$$x^2 - 9 = 2x - 1$$
; $x^2 - 2x - 8 = 0$

$$x = \frac{2 \pm \sqrt{4 + 32}}{2} = \frac{2 \pm 6}{2} = \frac{4}{-2}$$

$$x_1 = 4; y_1 = 7$$

$$x_2 = -2; y_2 = -5$$

2. (3 ptos) Una empresa cinematográfica dispone de tres salas A, B y C. Los precios de entrada a cada una de estas salas son 1, 2 y 3 €, respectivamente. Un día la recaudación conjunta de las tres salas fue de 425 € y el número total de espectadores que acudieron fue de 200. Si los espectadores de la sala A hubiesen asistido a la sala B y los de la sala B a la sala A, se obtendrá una recaudación de 400 €. Calcúlese el número de espectadores que acudió a cada sala.

Una empresa cinematográfica dispone de tres salas A, B y C. Los precios de entrada a cada una de estas salas son 1, 2 y 3 €, respectivamente. Un día la recaudación conjunta de las tres salas fue de 425 € y el número total de espectadores que acudieron fue de 200. Si los espectadores de la sala A hubiesen asistido a la sala B y los de la sala B a la sala A, se obtendrá una recaudación de 400 €.

Calcúlese el número de espectadores que acudió a cada sala.

Planteamiento:

ranteametric:

$$x = n^{0}$$
 de espectadores en la sala A
 $y = n^{0}$ de espectadores en la sala B \rightarrow
$$\begin{cases} x + y + z = 200 \\ x + 2y + 3z = 425 \\ y + 2x + 3z = 400 \end{cases}$$

$$\begin{cases} x + y + z = 200 \\ x + 2y + 3z = 425 \\ 2x + y + 3z = 400 \end{cases}$$

$$\begin{pmatrix} 1 & 1 & 1 & | 200 \\ 1 & 2 & 3 & | 425 \\ 2 & 1 & 3 & | 400 \end{pmatrix} \xrightarrow{F_2 - F_1} \begin{pmatrix} 1 & 1 & 1 & | 200 \\ 0 & 1 & 2 & | 225 \\ 0 & -1 & 1 & 0 \end{pmatrix} \xrightarrow{F_3 + F_2} \begin{pmatrix} 1 & 1 & 1 & | 200 \\ 0 & 1 & 2 & | 225 \\ 0 & 0 & 3 & | 225 \end{pmatrix} \rightarrow \begin{cases} x + y + z = 200 \\ y + 2z = 225 \\ 3z = 225 \end{cases}$$

$$z = \frac{225}{3} = 75$$
; $y + 2 \cdot 75 = 225 \rightarrow y = 225 - 150 \rightarrow y = 75$; $x + 75 + 75 = 200 \rightarrow x = 50$

Solución: A la sala A acudieron 50 espectadores, a la sala B acudieron 75 espectadores y a la C, 75 espectadores

3. (2 ptos) Calcular m para que la parábola y=x²+mx+10 tenga el vértice en el punto V(3,1). ¿Cuáles son los puntos de corte con los ejes?

a) Para calular el vértice sabemos que:
$$y=ax^2+bx+c$$

$$x=\frac{-b}{2a}=P$$

$$3=\frac{-m}{2}=p$$

$$m=-6$$

6) Los ptes de corte son:
$$y=x^2-6x+10$$

Eje X:
$$y=0 = 7$$
 $0=x^2-6x+10 = 7$ $x=\frac{6\pm\sqrt{36-40}}{2}=7$ R

4. (2,25 ptos) Dada las funciones
$$f(x) = \frac{-3}{x}$$
 y $g(x) = \frac{-3x}{x+1}$ calcula:

a)
$$(0.75) g^{-1}(x)=$$

b)
$$f \circ g(x) =$$

c) Dom
$$g(x)=$$

d) Rec
$$f(x)$$
=

a)
$$y = \frac{-3x}{x+1} \Rightarrow x = \frac{-3y}{y+1} \Rightarrow xy + x = -3y \Rightarrow xy + 3y = -x$$

$$y(x+3) = -x \Rightarrow y = \frac{-x}{x+3} \Rightarrow y = \frac{-x}{x+3}$$

6)
$$\int_{0}^{2} g(x) = \int_{0}^{2} (g(x)) = \frac{-3}{(-3x/x+1)} = \frac{-3(x+1)}{-3x} = \frac{x+1}{x}$$

$$X = \frac{-3}{x} \Rightarrow y = \frac{-3}{x} \Rightarrow \int_{-1}^{-1} (x) = \frac{-3}{x}$$