HOJA 1.

TEMA 6: LÍMITES Y CONTINUIDAD.

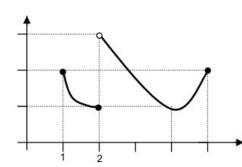
Problemas de cálculo de límites.

Calcular los siguientes límites no indeterminados¹:

a)
$$\lim_{x\to 3} \frac{1}{x}$$

b)
$$\lim_{x\to 3} \frac{x-1}{x+2}$$

b)
$$\lim_{x \to 3} \frac{x-1}{x+2}$$
 c) $\lim_{x \to 4} (x^2 - 4x + 3)$ **d)** $\lim_{x \to 1} (x^2 + 4x)$ **e)** $\lim_{x \to -1} (3x + 5)$


d)
$$\lim_{x \to 0} (x^2 + 4x)$$

f)
$$\lim_{x \to e} (1 + \ln x)$$
 g) $\lim_{x \to 0,1} \log x$ h) $\lim_{x \to -2} (x^3 - 3x^2 + 4x)$ i) $\lim_{x \to 0^+} \sqrt{x}$ j) $\lim_{x \to 4} \frac{1}{\sqrt{x}}$

j)
$$\lim_{x\to 4} \frac{1}{\sqrt{x}}$$

¹ Es decir, se pueden hacer por sustitución directa, ya que límite e imagen coinciden.

2.

Dada la gráfica de la figura, indicar si existe lim f(x) en los siguientes casos:

- a) Cuando x → 1
- b) Cuando $x \rightarrow 2$
- Cuando x → 4
- Cuando x → 5

Representar la función

f (x)=
$$\begin{cases} 2 & \text{si } x < 1 \\ 4 - x & \text{si } 1 \le x < 3 \\ x - 2 & \text{si } x \ge 3 \end{cases}$$

Obtener a continuación analíticamente lim f(x) cuando $x \to 1$, $x \to 3$, $x \to 5$, $x \to \infty$, $x \to -\infty$, y comprobar en la gráfica.

4- Calcular los siguientes límites de funciones polinómicas:

a)
$$\lim_{x \to 0} (x^2 + x + 1)$$

b)
$$\lim_{x\to\infty} (x^2 + x + 1)$$
 c) $\lim_{x\to 1} (x-1)^7$ **d)** $\lim_{x\to\infty} (x-1)^7$

d)
$$\lim_{x \to 1} (x-1)^{7}$$

e)
$$\lim_{x \to \infty} (x^3 - 2x^2 - 3x - 10)$$
 f) $\lim_{x \to \infty} (-x^2 + 2x + 5)$ g) $\lim_{x \to \infty} (x^2 + 3x + 1)$ h) $\lim_{x \to \infty} (x^3 + x^2 + x + 7)$

f)
$$\lim_{x \to 2} (-x^2 + 2x + 5)$$

g)
$$\lim (x^2 + 3x + 1)$$

h) lim
$$(x^3 + x^2 + x + 7)$$

i)
$$\lim_{x \to 0} (x^3 + x^2 + x + 7)$$

j)
$$\lim (3x^2 - 100x - 50)$$

i)
$$\lim_{x \to 3} (x^3 + x^2 + x + 7)$$
 j) $\lim_{x \to 3} (3x^2 - 100x - 50)$ k) $\lim_{x \to 3} (-2x^3 + 100x + 200)$

(Soluc: a) 7; b) ∞ ; c) 0; d) ∞ ; e) ∞ ; f) $-\infty$; g) ∞ ; h) $-\infty$; i) 10; j) ∞ ; k) ∞)

5- Calcular los siguientes límites por sustitución directa y, en algunos casos, operando:

1)
$$\lim_{x \to \infty} \left(\frac{1}{x^2} + 3 \right)$$
 2) $\lim_{x \to \infty} \frac{1}{\sqrt{x}}$

2)
$$\lim_{x\to\infty}\frac{1}{\sqrt{x}}$$

3)
$$\lim_{x\to 1} \left(5-\frac{1}{x^2}\right)$$
 4) $\lim_{x\to \infty} \left(5-\frac{1}{x^2}\right)$ 5) $\lim_{x\to -\infty} \frac{1}{x}$

4)
$$\lim_{x \to \infty} \left(5 - \frac{1}{x^2} \right)$$

5)
$$\lim_{x\to -\infty} \frac{1}{x}$$

6)
$$\lim_{x\to 2} \frac{2}{x}$$

7)
$$\lim_{x \to \infty} \frac{2}{x}$$

8)
$$\lim_{x \to \infty} \frac{9x + 2}{x^2}$$

6)
$$\lim_{x\to 2} \frac{2}{x}$$
 7) $\lim_{x\to \infty} \frac{2}{x}$ 8) $\lim_{x\to \infty} \frac{9x+2}{x^2}$ 9) $\lim_{x\to \infty} \frac{9x+2}{x^2}$ 10) $\lim_{x\to 2} \frac{9x+2}{x^2}$

10)
$$\lim_{x \to 2} \frac{9x + 2}{x}$$

11)
$$\lim_{x\to 0} \frac{9x+2}{x^2}$$
 12) $\lim_{x\to \infty} 2^{x-1}$ 13) $\lim_{x\to -\infty} 2^{x-1}$ 14) $\lim_{x\to \infty} 0,5^{x-1}$

16)
$$\lim_{x \to \infty} (1 + e^x)$$
 17) $\lim_{x \to \infty} (1 + e^x)$ 18) $\lim_{x \to \infty} \frac{1}{e^x}$ 19) $\lim_{x \to \infty} \frac{1}{e^x}$ 20) $\lim_{x \to \infty} \log x$

21)
$$\lim_{x\to 0^+} \ln x$$

22)
$$\lim_{x \to \infty} \log (x^2 + 1)$$

23)
$$\lim_{x \to \infty} \ln \left(1 + \frac{1}{x} \right)$$

21)
$$\lim_{x\to 0^+} \ln x$$
 22) $\lim_{x\to \infty} \log (x^2+1)$ 23) $\lim_{x\to \infty} \ln \left(1+\frac{1}{x}\right)$ 24) $\lim_{x\to \infty} \frac{1}{1+\log \sqrt{x}}$ 25) $\lim_{x\to \infty} \ln \frac{1}{x^2}$

25)
$$\lim_{x \to -\infty} \ln \frac{1}{x^2}$$

26)
$$\lim_{x \to x} \left(\log x + \frac{3x+2}{x^2} \right)$$
 27) $\lim_{x \to -x} \left(1 + \frac{1}{e^x} \right)$ 28) $\lim_{x \to x} \left(\frac{x^2}{x+3} \ln x \right)$ 29) $\lim_{x \to x} \frac{3x+2}{x^2 \log x}$ 30) $\lim_{x \to x} \left(\frac{1}{x^2} - x \right)$

$$27) \lim_{x\to -\infty} \left(1+\frac{1}{e^x}\right)$$

28)
$$\lim_{x \to \infty} \left(\frac{x^2}{x+3} \ln x \right)$$

29)
$$\lim_{x \to \infty} \frac{3x + 2}{x^2 \log x}$$

30)
$$\lim_{x\to\infty} \left(\frac{1}{x^2} - x\right)$$

CALCULO DE INDETERMINACIONES.

6- Calcula los límites siguientes:

a)
$$\lim_{x \to -3} \frac{x+3}{x^2-9}$$

$$\lim_{x \to \infty} \frac{x^3 + 8}{-x - 2}$$

b)
$$\lim_{x \to -3} \frac{x^2 - 9}{x - 3}$$

i)
$$\lim_{x \to \infty} \frac{x^3 + 8}{-x^5 - 2}$$

c)
$$\lim_{x \to 3} \frac{x^3 + 27}{x^2 + 3x}$$

$$\lim_{x \to \infty} \frac{3x^3 + 8}{-x^3 - 2}$$

d)
$$\lim_{x\to 1} \frac{x^3-1}{x^2+x-2}$$

$$\lim_{x\to\infty} \left(\frac{3x}{x^2-4} - \frac{2}{x+2} \right)$$

e)
$$\lim_{x \to -2} \frac{x^3 + 8}{-x - 2}$$

$$\lim_{x \to \infty} \left(\frac{3x}{x^2 - 4} - \frac{x - 3}{x + 2} \right)$$

f)
$$\lim_{x \to 1} \frac{\sqrt{3+x} - 4}{x - 1}$$

m)
$$\lim_{\substack{x \to \infty \\ x \to \infty}} \left(\sqrt{3x - 1} - \sqrt{x^2 - 2x} \right)$$
n)
$$\lim_{\substack{x \to \infty \\ x \to \infty}} \left(\sqrt{x - 1} - \sqrt{x - 2} \right)$$

g)
$$\lim_{x \to -4} \frac{x^3 + 8x - 2}{-x^2 - 2x + 3}$$

o)
$$\lim_{x \to \infty} \left(\frac{1}{\sqrt{x-2} - \sqrt{x+2}} \right)$$

SOL.:a) - 1/9; b) 0; c) -9; d) 1; e)-12; f) 0; g) 98/5; h) - ∞ ; i) 0; j) -3; k) 0; l)-1; m) - ∞ ; n) 0; o) - ∞ .

7- (EXTRA) Calcular los siguientes límites de funciones racionales (nótese que en el 2º miembro de la igualdad se indica la solución):

a)
$$\lim_{x\to 2} \frac{x^3-8}{x^2-4} = 3$$

g)
$$\lim_{x\to a} \frac{2x^2 + ax - 3a^2}{3x^2 - ax - 2a^2} = 1$$

b)
$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^4 + x^2 + x - 3} = \frac{3}{7}$$

h)
$$\lim_{x\to 2} \frac{x^3 - 3x^2 + 4}{3x^3 - 18x^2 + 36x - 24} = \pm \infty$$

c)
$$\lim_{x\to 2} \frac{x-2}{2x-4} = \frac{1}{2}$$

i)
$$\lim_{x \to 1/2} \frac{2x^3 + 3x^2 - 1}{4x^3 + 16x^2 - 19x + 5} = \pm \infty$$

d)
$$\lim_{x \to 1} \frac{x^3 + x - 2}{x^2 - 1} = 2$$

$$j) \lim_{x \to 2} \frac{x^4 - 5x^3 + 6x^2 + 4x - 8}{x^3 - 4x^2 + 4x} = 0$$

e)
$$\lim_{x \to -4} \frac{x^3 + 9x^2 + 24x + 16}{x^3 + 11x^2 + 40x + 48} = 3$$

k)
$$\lim_{x \to b} \frac{b^2 - bx}{b^3 + 5b^2x - 3bx^2 - 3x^3} = \frac{1}{10b}$$

f)
$$\lim_{x \to 3} \frac{x^2 - 4x + 3}{x^3 - 5x^2 + 3x + 9} = \pm \infty$$

NOTA: Cuando señalamos que el resultado de un límite es $\pm \infty$, no estamos indicando que haya dos límites (recordar que el límite, caso de existir, es único), sino que, a ambos lados de un valor finito, la función diverge a $+\infty$ o $-\infty$.

8- (EXTRA) Calcular los siguientes límites infinitos (en algunos casos figura la solución):

c)
$$\lim_{x\to\infty} \frac{x-2}{2x-4}$$

d)
$$\lim_{x \to -\infty} \frac{x^3 + x - 2}{x^2 - 1}$$

e)
$$\lim_{x \to -\infty} \frac{x^2 - 4x + 3}{x^3 - 5x^2 + 3x + 9}$$

f)
$$\lim_{x \to -\infty} \frac{2x^2 + ax - 3a^2}{3x^2 - ax - 2a^2} = \frac{2}{3}$$

g)
$$\lim_{x \to \infty} \frac{2x^3 + 3x^2 - 1}{4x^3 + 16x^2 - 19x + 5}$$

h)
$$\lim_{x \to -\infty} \frac{x^3 - 3x^2 + 4}{3x^3 - 18x^2 + 36x - 24}$$

i)
$$\lim_{x \to \infty} \frac{x^4 - 5x^3 + 6x^2 + 4x - 8}{x^3 - 4x^2 + 4x}$$

j)
$$\lim_{x \to \infty} \frac{x^3 + a^3}{x^2 - a^2} = \infty$$

k)
$$\lim_{x \to \infty} \frac{b^2 - bx}{b^3 + 5b^2x - 3bx^2 - 3x^3} = 0$$

m)
$$\lim_{x \to \infty} \frac{x^3 + 2}{x + 5}$$

n)
$$\lim_{x \to \infty} \frac{x^3 - 3x^2 + 4}{x^3 - 2x^2 - 4x + 8}$$

o)
$$\lim_{x \to -\infty} \frac{x^3 - 1}{x^3 + 2x^2 - 3x}$$

p)
$$\lim_{x \to \infty} \frac{x+3+\frac{x-2}{x+1}}{x+\frac{x^2}{x-2}} = \frac{1}{2}$$

q)
$$\lim_{x \to \infty} \frac{x-3}{x^2 - 3x + 2}$$

r)
$$\lim_{x \to -\infty} \frac{x^2 - 3x + 2}{x - 3}$$

s)
$$\lim_{x \to -\infty} \frac{x^3 - 1}{x^2 - 2x + 1}$$

t)
$$\lim_{x \to -\infty} \frac{x^2 - 4}{x^3 + 3x^2 - 4}$$