TEMA 5: FUNCIONES.

OPERACIONES CON FUNCIONES.

1.- Realiza las operaciones indicadas con las siguientes funciones:

$$p(x) = -5x + 3 \quad ; \quad q(x) = 2x^{2} - x + 7 \quad ; \quad r(x) = -x^{3} + 6 \quad ; \quad s(x) = 3x^{2} - x$$

$$f(x) = \frac{2x - 4}{x + 3} \quad ; \quad g(x) = \frac{-3}{x} \quad ; \quad h(x) = \frac{x + 1}{x^{2}} \quad ; \quad j(x) = \frac{-x^{2}}{x^{2} - 4}$$

$$k(x) = e^{x - 4} \quad ; \quad l(x) = 2^{\frac{1}{x}} \quad ; \quad m(x) = \left(\frac{2}{3}\right)^{x} \quad ; \quad n(x) = e^{\frac{x}{x - 1}}$$

$$a(x) = L(x - 2) \quad ; \quad b(x) = \log\left(\frac{x - 1}{3}\right) \quad ; \quad c(x) = L\left(\frac{x^{2} - 1}{2x + 4}\right) \quad ; \quad d(x) = \log\left(x^{3} - 1\right)$$

a) $(p+q)$	(x)	b)	(q+r)(x)
c) (q+r+	s)(x)	d)	(s-q)(x)
e) (q-r)	(x)	f)	(r-p)(x)
g) (f+p)	n(x)	h)	(j-f)(x)
i) (g+k)	(x)	j)	(m-a)(x)
k) (b+d)	(x)	I)	(r+m)(x)
m) (p·q)(x)	n)	$(q \cdot r)(x)$
o) (q·r:s)(x)	p)	(p:q)(x)
q) (f · p)	(x)	r)	$(j \cdot f)(x)$
s) (g:k)	(x)	t)	$(a \cdot b)(x)$
u) $(p \circ q)$	(x)	v)	$(a \circ b)(x)$
w) (r∘s)(x)	x)	$(f \circ p)(x)$
y) $(j \circ f)$	(x)	z)	$(g \circ k)(x)$

2.- Calcula en tu cuaderno las inversas que existan de las funciones del ejercicio anterior:

$$p(x) = -5x + 3 \quad ; \quad q(x) = 2x^{2} - x + 7 \quad ; \quad r(x) = -x^{3} + 6 \quad ; \quad s(x) = 3x^{2} - x$$

$$f(x) = \frac{2x - 4}{x + 3} \quad ; \quad g(x) = \frac{-3}{x} \quad ; \quad h(x) = \frac{x + 1}{x^{2}} \quad ; \quad j(x) = \frac{-x^{2}}{x^{2} - 4}$$

$$k(x) = e^{x - 4} \quad ; \quad l(x) = 2^{\frac{1}{x}} \quad ; \quad m(x) = \left(\frac{2}{3}\right)^{x} \quad ; \quad n(x) = e^{\frac{x}{x - 1}}$$

$$a(x) = L(x - 2) \quad ; \quad b(x) = \log\left(\frac{x - 1}{3}\right) \quad ; \quad c(x) = L\left(\frac{x^{2} - 1}{2x + 4}\right) \quad ; \quad d(x) = \log\left(x^{3} - 1\right)$$

	FUNCIÓN	INVERSA	FUNCIÓN	INVERSA
a)	p(x)		b) q(x)	
c)	r(x)		d) s(x)	
e)	f(x)		f) g(x)	
g)	h(x)		h) j(x)	
i)	k(x)		j) l(x)	
k)	m(x)		1) n(x)	
m)	a(x)		n) b(x)	
0)	c(x)		p) d(x)	

SOLUCIONES:

Solución:

b) $(q+r)(x) = -x^3 + 2x^2 - x + 13$
d) $(s-q)(x) = x^2 - 7$
f) $(r-p)(x) = -x^3 + 5x + 3$
h) $(j-f)(x) = (-x^2/(x^2-4)) - ((2x-4)/(x+3))$
j) $(m-a)(x) = (2/3)^x - L(x-2)$
$(r+m)(x) = -x^3 + 6 + (2/3)^x$
n) $(q \cdot r)(x) = -2x^5 + x^4 - 7x^3 + 12x^2 - 6x + 42$
$p) \qquad (p:q)(x) = (-5x + 3)/(2x^2 - x + 7)$
$f) \qquad (j \cdot f)(x) = -2x^2/(x^2 - x - 6)$
t) $(a \cdot b)(x) = L(x-2) \cdot log((x-1)/3)$
$(a \circ b)(x) = L(\log((x-1)/3 - 2))$
x) $(f \circ p)(x) = (-10x + 2)/(-5x + 6)$
$z) \qquad (g \circ k)(x) = -3/e^{x-4}$

FUNCIÓN	INVERSA	FUNCIÓN	INVERSA
a) p(x)	y = (3 - x)/5	b) q(x)	No existe
c) r(x)	$y = \sqrt[3]{6-x}$	d) s(x)	No existe
e) f(x)	y = (3x + 4)/(2 - x)	f) g(x)	y = -3/x
g) h(x)	No existe	h) j(x)	No existe
i) k(x)	y = 4 + In(x)	j) l(x)	$y = 1/log_2(x)$
k) m(x)	$y = log_{(2/3)}(x)$	l) n(x)	$y = \ln(x)/(\ln(x) - 1)$
m) a(x)	y =2 + e ^x	n) b(x)	$y = 1 + 3.10^{x}$
o) c(x)	No existe	ρ) d(x)	$y = \sqrt[3]{1+10^x}$