Departamento: Matemáticas

Asignatura:

Matemáticas

Tema:

c)

Ejemplos matemáticas financieras

Evaluación: Curso: 1^a 1º BAC

CC_SS

Ejemplos de Matemáticas financieras

Problema 1:

Pedimos un crédito de 15.000€ a pagar en 12 mensualidades al 8% anual. Hallad:

- a) Cuánto deberemos pagar al final
- b) A cuánto asciende la cuota
- c) La tabla de intereses y deuda pendiente a lo largo de los 12 meses
- d) La cantidad amortizada al cabo de 6 meses mediante las fórmulas adecuadas (en la tabla anterior ya aparecía la deuda pendiente)

a) Al final pagaremos:
$$C = C_0 \left(1 + \frac{r}{n}\right)^n \longrightarrow C_F = 15000 (1 + 0.08/12)^{12} = 16.244'99 \in 100,08$$
 $t = 12 \text{ meses}$
 $t = 15.000 \frac{\left(1 + \frac{0.08}{12}\right)^{12} \left(\frac{0.08}{12}\right)}{\left(1 + \frac{0.08}{12}\right)^{12} - 1} = 1.304.82 \in 1000$

Mensualidad	Deuda antes del pago	Intereses pendientes	Pago	Cantidad amortizada	Deuda pendiente
1	15.000 €	100 €	1.304,82 €	1.204,82 €	13.795,18 €
2	13.795,18€	92 €	1.304,82 €	1.212,85 €	12.582,33 €
3	12.582,33€	84 €	1.304,82 €	1.220,94 €	11.361,39 €
4	11.361,39€	76 €	1.304,82 €	1.229,08 €	10.132,31 €
5	10.132,31 €	68 €	1.304,82 €	1.237,27 €	8.895.04 €
6	8.895,04 €	59€	1.304,82 €	1.245,52 €	649,52
7	7.649,52 €	51€	1.304,82 €	1.253,82 €	16.395,70 €
8	6.395,70 €	43 €	1.304,82 €	1.262,18 €	/5.133,52 €
9	5.133,52 €	34 €	1.304,82 €	1.270,60 €	; 3.862,92 €
10	3.862,92 €	26€	1.304,82 €	1.279,07 €	1 2.583,85 €
11	2.583,85 €	17€	1.304,82 €	1.287,59 €	1.296,26€
12	1.296,26 €	9€	1.304,82 €	1.296,18 €	0,08 €

- d) Veamos todos los pasos:
 - 1. Cuánto deberemos

$$C = C_0 \left(1 + \frac{r}{n} \right)^t = 15.000 \left(1 + \frac{0.08}{12} \right)^6 = 15.610,096$$

$$C = C_0 \frac{\left(1 + \frac{r}{n}\right)^{-1}}{\left(\frac{r}{n}\right)} = 1.304,82 \frac{\left(1 + \frac{0,08}{12}\right)^6}{\left(\frac{0,08}{12}\right)} = 7.960,566$$

3. Cuánto nos queda por pagar:

15.610,09€-7.960,56€ €7.649,53

4. Cuánto hemos amortizado:

15.000-7.649,53=7.350,47€

Matemáticas Departamento:

Asignatura: Matemáticas

Tema: Ejemplos matemáticas financieras Evaluación: Curso: 1º BAC CC SS

Problema 2:

Pedimos un crédito de 200.000€ para comprar una casa a pagar en 20 años al 5% anual, en mensualidades. Hallad:

- a) Cuánto deberemos pagar al final
- b) A cuánto asciende la cuota
- c) Al cabo de 18 años tenemos suerte y nos toca la lotería. Nos planteamos acabar de pagar el crédito sabiendo que nos cobran un 2% de cancelación de la hipoteca. ¿Cuánto deberemos pagar?

a) Al final pagaremos si hiciéramos un único pago:

$$m = C \frac{\left(1 + \frac{r}{n}\right)^{-\epsilon} \left(\frac{r}{n}\right)}{\left(1 + \frac{r}{n}\right)^{-\epsilon}}$$

$$C = C_0 \left(1 + \frac{r}{n} \right)^n \longrightarrow C_F = 200000 (1 + 0.05/12)^{240} = \underline{542.528.06} \in \left(1 + \frac{r}{n} \right)^n \left(\frac{r}{n} \right)$$

$$\mathbf{m} = \mathbf{C} \underbrace{\left(1 + \frac{\mathbf{r}}{n}\right)^{t} \left(\frac{\mathbf{r}}{n}\right)}_{t-1} \qquad \mathbf{m} = 200.000 \underbrace{\left(1 + \frac{0.05}{12}\right)^{1220} \left(\frac{0.05}{12}\right)}_{t-1} = \underline{1.319.916}$$

$$C = C_0 \left(1 + \frac{r}{n}\right)^n \longrightarrow C_F = 200000 (1 + 0.05/12)^{216} = 491.001^96 \in$$

2°) Cuanto hemos pagado en los 18 años (Cp):

$$C_{p} = m \cdot \frac{\left(1 + \frac{r}{n}\right)^{\frac{r}{n}} - 1}{\left(\frac{r}{n}\right)} \qquad C_{p} = 1.319,91 \frac{\left(1 + \frac{0.05}{12}\right)^{\frac{12.18}{n}} - 1}{\left(\frac{0.05}{12}\right)} = 460.915,240$$

- 3°)Queda por pagar: 491001'96-460915'24=30.086'44€
- 4°) Aplicando una comisión del 2% sobre lo que queda por pagar, tendremos que abonar para finalizar el préstamos:

30.086 44.(1+0,02) = 30.688 15 €