Boletín 11. Integrales definidas

1. Calcula las siguientes integrales definidas

a)
$$\int_{0}^{5} (-2x^2 + x - 1) dx$$

b)
$$\int_{1}^{e} \frac{1}{2x} dx$$

c)
$$\int_{0}^{\pi} -5 \operatorname{sen}(x) dx$$

d)
$$\int_{-2}^{2} (2x^3 - 4x + 3) dx$$

e)
$$\int_{0}^{e} \frac{-3x}{x^2+1} dx$$

$$f) \quad \int\limits_0^\pi \left(2 \operatorname{sen}(x) - 4 x\right) dx$$

$$g) \quad \int_{1}^{4} \frac{x-2}{x^2} dx$$

2. Calcula el área encerrada entre estas funciones, el eje X y las rectas x=-3 y x=1

a)
$$f(x)=x^2+4$$
; b) $g(x)=-x^2+4$; c) $h(x)=-x^2-4$

3. Determina el área encerrada por cada una des estas funciones, el eje de abscisas y las rectas x=-1 y x=3.

a)
$$f(x)=4-x^2$$
; b) $g(x)=x^2-2x-8$

4. Determina el área encerrada por cada una de estas funciones, el eje de abscisas y las rectas x=-2 y x=1

a)
$$f(x)=3x^2-5x$$
; b) $g(x)=2x^3+x^2-x$

- 5. Halla el área comprendida entre las gráficas de las funciones $f(x)=-x^2+9$ y $g(x)=(x+1)^2-4$
- 6. Halla el área comprendida entre las gráficas de las funciones $f(x)=x^3-9x$ y g(x)=12x-20
- 7. Calcula la derivada de las siguientes funciones usando el teorema fundamental del cálculo integral.

a)
$$g(x) = \int_{x}^{0} 2tdt$$
 b) $g(x) = \int_{0}^{x} tg(t)dt$

8. Halla las derivadas de las siguientes funciones

a)
$$g(x) = \int_{-x^2}^{x^3} sen(2t) dt$$
 b) $g(x) = \int_{3x-2}^{x^2+x} e^{-t^2} dt$ c) $g(x) = \int_{0}^{x} cos(t^2) dt$

b)
$$g(x) = \int_{3x-2}^{x^2+x} e^{-t^2} dt$$

c)
$$g(x) = \int_{0}^{x} \cos(t^2) dt$$

9. Dibuja el recinto encerrado entre las gráficas de las funciones $y=x^2-6x$ e y=3x y calcula su área

10. Sea la función $F(x) = \int_{1}^{x} (\frac{sent}{t}) dt$ definida para x≥1. Halla los valores de x en los que alcanza sus máximos y mínimos relativos

Soluciones

1a)
$$\frac{-224}{3}$$
; 1b) $\frac{1}{2}$; 1c) -10; 1d) 12; 1e) $\frac{-3}{2} \ln |e^2 + 1|$; 1f) $4 - 2\pi^2$;

1g)
$$\ln(4) - \frac{3}{2}$$

2a)
$$\frac{76}{3}$$
; 2b) $\frac{34}{3}$; 2c) $\frac{76}{3}$

3a)
$$\frac{34}{3}$$
; 3b) 30,666...

4a)
$$\frac{39}{2}$$
; 4b) $\frac{71}{16}$

5)
$$\frac{125}{3}$$

6)
$$\frac{999}{4}$$

7a)
$$-2x$$
; 7b) $tg(x)$

8a)
$$3x^2$$
sen $(2x^3)$ +2xsen $(-2x^2)$; 8b) $(2x+1)e^{-(x^2+x)^2}$ 3c $(-3x-2)^2$ 8c) $\cos(x)^2$

9) 121.5

10) $F'(x) = \frac{senx}{x}$ Esta derivada se anula si sen(x) =0, es decir, si x= π +k π con k= 0,1,2, ... Es máximo para k= 0,2,4... y mínimo para k= 1,3,5,...