
#### SEGUIMOS REPASANDO

## VALORES FUNDAMENTALES DE LA CORRIENTE ALTERNA

Representamos gráficamente la señal de ca como una función senoidal ( recordad que consideramos siempre la tensión en el origen de fases, es decir,  $\varphi = 0$ ). Dicha señal toma la siguiente característica gráfica:



#### donde:

- para t = 5ms, la tensión alcanza su valor más alto V = 325V que llamamos valor máximo
- para t = 2,5ms, la tensión toma el valor que llamamos valor eficaz. Valor que tomamos como referencia y que vale V = 230V ( valor máximo dividido por raíz de dos ).
- Que si el **período** vale T = 20ms ( tiempo que tarda la señal en realizar un ciclo o tiempo que tarda la espira en dar una vuelta completa ), la **frecuencia** de la señal es de 50Hz
- Que la **pulsación** o velocidad angular de giro de la espira es  $\omega = 2\pi f$  rad/s

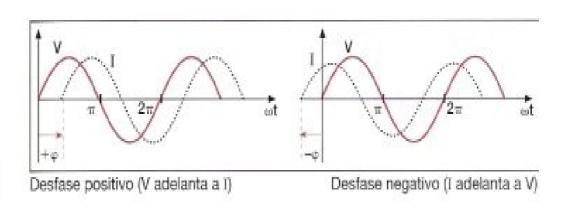
Con todos estos valores ya estamos en condiciones de expresar la señal tensión en su **forma instantánea**, es decir, podemos representar la señal tensión en todos los instantes de tiempo como:

$$v = V_{max} sen (\omega t + \varphi)$$
 siendo  $\varphi = 0$ 

$$v = 325 sen (100\pi t + 0) con f = 50 Hz$$

Para poder trabajar más cómodamente, nos ayudamos de los diagramas fasoriales. De esta forma representamos la tensión como:

$$\mathbf{V} = \mathbf{V}_{\rm ef} / \mathbf{\varphi}$$


V es el fasor tensión ( lleva sombrerito )  $V_{ef}$  es el valor eficaz, en nuestro caso 230V  $\phi$  es el ángulo de fase, que para la tensión es de cero

$$V = 230 / 0^{\circ} \text{ Voltios } (230 \text{ caja } 0^{\circ})$$

En el caso de que tengamos que sumar varias tensiones, expresamos el fasor tensión en número complejo:

$$V = 230\cos\varphi + j230\sin\varphi \mod \varphi = 0$$
  
 $V = 230\cos\theta + j230\sin\theta = 230 + j\theta = 230V$ 

Cuando conectamos un receptor la intensidad que fluye por el circuito tendrá las mismas características que la tensión pero desplazada un ángulo φ. Este ángulo φ vendrá determinado por el tipo de receptor.



Siendo:

$$i = I_{max}$$
 sen  $(100\pi t + \phi)$  si el desfase entre señales es positivo  $i = I_{max}$  sen  $(100\pi t - \phi)$  si el desfase entre señales es negativo

Representación fasorial para intensidades:

$$I = I_{ef} / \varphi$$
 (  $I_{ef}$  caja  $\varphi$  )

 $I_{\text{ef}}$  valor eficaz, es decir, valor máximo entre raíz de dos  $\phi$  ángulo de desfase positivo o negativo según el tipo de receptor

 $I = I_{ef} \cos \varphi + jI_{ef} \operatorname{sen}\varphi$  representando la intensidad en variable compleja.

## **PRACTICAMOS**:

- 1. La intensidad que circula por dos receptores conectados en paralelo, medida en un osciloscopio, tiene los siguientes valores:
  - $i_1 = 12 \text{ sen } (100\pi t 18^{\circ}) \text{ A}$  para el primer receptor
  - $i_2 = 8 \text{ sen } (100\pi t 20^\circ) \text{ A}$  para el segundo

Determinar la intensidad total del circuito de asociación de los dos receptores en paralelo. (Aplicación de la 1ª Ley de Kirchhoff)

**2.** Si los receptores anteriores están conectados a V = 230 / 0 V, determinar la impedancia de cada uno. ( No hay más que aplicar la Ley de Ohm ) ¿ Qué tipo de receptores podrían ser ?

La solución a estos dos ejercicios a <u>lconde@edu.xunta.es</u>. Los que no podáis por e-mail me mandáis **foto de was por privado** no por el grupo de was.

#### En ASUNTO PONEIS REPASO DE ca

# ÁNIMO!!!!!!