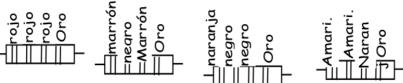
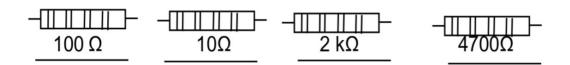
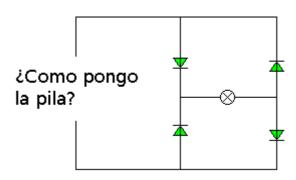

EXAMEN DE TECNOLOGÍA 3° DE ESO ELECTRÓNICA 3° AVALIACIÓN

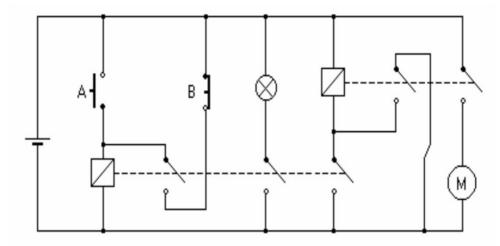
Apellidos y nombre:


- 1. Calcula la resistencia equivalente, la intensidad total y la potencia $\;\;\Box V \;\;\Box entregada \;por la pila de 9 V \;\;$
- 2. Si se que en la resistencia de $3k\Omega,$ caen 3,89V y que la intensidad que circula por la resistencia de $2k\Omega$ es de 0,73mA
- a. ¿Qué voltaje cae en la resistencia de $9k\Omega$?
- b. ¿Qué intensidad circula por la resistncia de $9k\Omega$?
- c. ¿Pueden caer 6 V por la resistencia de $5k\Omega$?. Justifica tu respuesta

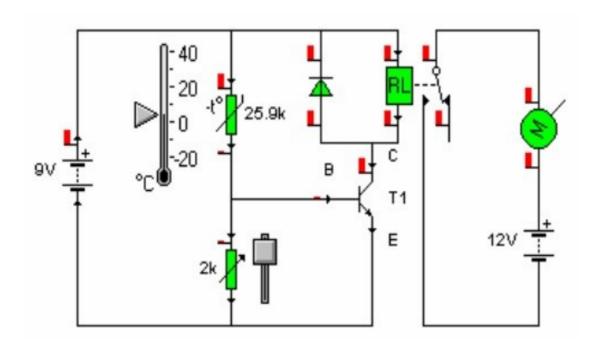

3. Con la ayuda de esta tabla

Color	negro	Marrón	rojo	naranja	amarillo	Verde	azul	Morado	Gris	blanco
númer	0	1	2	3	4	5	6	7	8	9
0										


a. Indica el valor de las resistencias


b. Representa los colores de las siguientes resistencias. Considera un error del 5%

4. ¿Me puedo equivocar poniendo la pila y que la bombilla no se ilumine?. Justifica tu respuesta


5. Explica este circuito con relé. De existir algún elemento que no se pueda desenganchar encuentra el modo de conseguirlo y explícalo

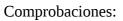
Momento	Funciona
sin pulsar nada	
Pulsando "A"	
Al soltar "A"	
Pulsando "B"	

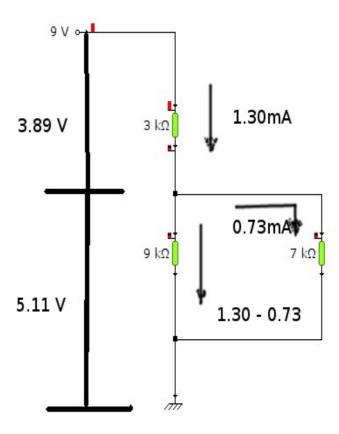
6. Explica el siguiente circuito. Para ello en primer lugar deberás identificar todos los elementos presentes y para que sirven.

Debe quedar muy claro el funcionamiento

1 e 2.

Calculamos 7k//9k e obtenemos $3.9k\Omega$

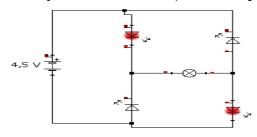

La resistencia total es $6.9k\Omega$

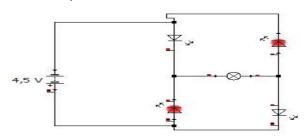

La intensidad total = $9V/6,9k\Omega = 1,30 \text{ mA}$

La potencia es P = VI = 9x1,3 = 11,7 mW

Si en el primer tramo de caída caen 3,89 V, en el siguiente caen todos los que queden 9 - 3,89 = 5,11 V

Si la intensidad total es 1,30 mA y se separa en dos cables, si por uno circulan 0,73 mA, entonces por el otro circulan 0,57 mA





3.a.

1ª franja = 1 ^{er} numero	rojo = 2	marrón = 1	marrón = 1	amarillo =4
2ª franja = 2º numero	rojo = 2	negro = 0	negro = 0	amarillo = 4
3ª franja = nº de ceros que añado	<u>rojo = 00</u>	marrón = 0	negro = –	<u>naranja = 000</u>
•	2200	100	10	44000

- b. Lo mismo pero al revés
- 4. Dibujo los dos circuitos (uso LED's para ver el resultado)

No importa como ponga la pila el circuito funciona

5. Sin pulsar nada bombilla y motor apagados

Al pulsar A excito el relé 1 que se engancha, enciende bombilla, excita relé 2, que se engancha y enciende motor

Al soltar A nada cambia pues ambos relés están enganchados

Al pulsar B desengancho relé 1, por lo que, la bombilla se apaga. Relé 2 sigue enganchados Al soltar B todo sigue igual

Para desenganchar relé 2 necesito un pulsador NC (varias posiciones son posibles en el circuito. Piensa donde ponerlas)

6. Mira la teoria