INFRAESTRUCTURAS DE P DESENVOLVIMIENTO DE MANTENIMIENTO ELECTRÓNICO

UD3 – PLANIFICACIÓN DE TIEMPOS

UD3 – TEORÍA

Profesor: Javier Fraga Iriso

3. PLANIFICACIÓN DE TIEMPOS

3.1. INTRODUCCIÓN A LA PLANIFICACIÓN DE TIEMPOS

3.1.1.Concepto

La planificación de tiempos es el proceso mediante el cual se determina la duración de las tareas necesarias en una intervención de mantenimiento y se establece la secuencia óptima para ejecutarlas.

3.1.2. Objetivo

- Hay que asegurar que el mantenimiento se realice en el tiempo previsto.
- Optimizar la asignación de recursos (técnicos, herramientas, materiales).
- Minimizar los **tiempos de parada** de equipos críticos.
- Facilitar la **programación semanal, mensual o anual** del plan de mantenimiento.

3.1.3.Importancia en el mantenimiento electrónico

- Las intervenciones pueden implicar tareas críticas: mediciones, calibraciones, pruebas funcionales, etc.
- La duración de las tareas influye directamente en la **disponibilidad** del sistema.
- Permite anticipar necesidades: repuestos, EPI, técnicos especializados, etc.

3.2. ESTIMACIÓN DE TIEMPOS DE MANTENIMIENTO

La estimación de tiempos consiste en calcular cuánto durará cada tarea, considerando:

- Complejidad técnica.
- Recursos humanos necesarios.
- Herramientas requeridas.
- Estado del equipo.
- Tiempo de preparación y cierre.

3.2.1. Factores que influyen en la estimación del tiempo

a) Naturaleza de la tarea

- ¿Es una inspección visual?
- ¿Implica desmontaje?
- ¿Requiere calibración o mediciones?

b) Experiencia del técnico

Los tiempos varían según la formación y habilidad.

c) Disponibilidad de recursos

- ¿Hay suficientes técnicos?
- ¿Se dispone de todas las herramientas?
- ¿El equipo está accesible?

d) Condiciones del entorno

- Espacio reducido.
- Ruido.
- Riesgos eléctricos que obligan a medidas adicionales de seguridad.

e) Históricos de mantenimiento

Los datos registrados en OT anteriores permiten mejorar la estimación.

(Ideal para introducir ejemplos de "tiempos medios por tarea" basados en históricos.)

3.2.2. Tipos de tiempos en mantenimiento

Tipo de tiempo	Descripción
Tiempo de preparación	Identificación, señalización, LOTO, recogida de herramientas
Tiempo de ejecución	Tiempo real de la tarea técnica (medir, sustituir, calibrar)
Tiempo de prueba	Verificación del funcionamiento tras la intervención
Tiempo de cierre	Documentación, limpieza, retirada de herramientas
Tiempo de espera	Falta de recurso, autorización, disponibilidad

3.2.3. Técnicas para estimar tiempos

1) Estimación basada en experiencia

Habitual en electrónica.

Los técnicos estiman la duración según experiencias previas.

2) Estimación por tareas estándar (tiempos MTM o estándar internos)

La empresa define "tiempos tipo":

- Medir tensión → 5 min
- Limpiar ventilador → 10 min
- Sustituir sensor → 20 min

3) Estimación por históricos

Revisión de órdenes de trabajo registradas:

- Tiempo medio de sustitución de condensador: 45 min.
- Tiempo medio de calibración de sensor: 25 min.

4) Descomposición de tareas (WBS – Work Breakdown Structure)

Dividir una tarea grande en subtareas más pequeñas:

Ejemplo: Calibración de instrumento

 \rightarrow Configurar equipo \rightarrow Medir referencia \rightarrow Ajustar \rightarrow Verificar \rightarrow Registrar.

5) Estimación mediante escenarios

- Optimista
- Más probable
- Pesimista

Muy usado en proyectos complejos.

3.3. TÉCNICAS DE PROGRAMACIÓN DEL MANTENIMIENTO

Una vez estimados los tiempos, hay que **programar** las tareas en el calendario y **ordenarlas** según dependencias, recursos y prioridades.

3.3.1. Programación basada en prioridades

Tipos de prioridad:

- Alta: equipos críticos, seguridad.
- Media: afecta parcialmente al sistema.
- Baja: revisiones rutinarias.

Las tareas de prioridad alta se programan primero.

3.3.2. Programación mediante diagramas de Gantt

¿Qué es un diagrama de Gantt?

Una representación **gráfica** de tareas en una línea temporal.

El Gantt permite:

- Ver qué tareas se solapan.
- Asignar técnicos.
- Visualizar dependencias.
- Controlar retrasos.

Elementos del Gantt:

- Tareas (filas).
- Duración estimada.
- Recursos asignados.
- Dependencias (flechas o secuencias).

(Ejemplo ideal para alumnos: mantenimiento mensual de PLC o fuente 24V.)

3.3.3. Programación con rutas críticas (Método CPM)

Objetivo:

Identificar la **ruta crítica**, es decir, la secuencia de tareas que determina la duración total del proyecto.

Ventajas:

- Identifica tareas que no pueden retrasarse.
- Permite detectar tareas con "holgura".

Aplicable cuando:

- El mantenimiento es complejo.
- Hay recursos limitados.
- Existen múltiples dependencias.

3.3.4. Programación según recursos disponibles

En electrónica es habitual tener recursos limitados (técnicos especializados):

- Solo un técnico puede usar el osciloscopio.
- Solo dos técnicos pueden manipular armarios energizados.
- Algunos técnicos tienen habilidades específicas.

Esto influye en:

- El orden de las tareas.
- El solapamiento posible.
- La duración total del mantenimiento.

(Ejercicio típico: asignación de técnicos a tareas simultáneas).

3.3.5. Programación cíclica

Aplicada en mantenimientos:

- Preventivos mensuales
- Revisiones trimestrales

• Calibraciones semestrales

Se establece un ciclo y se repite de forma periódica

3.4. HERRAMIENTAS PARA LA PROGRAMACIÓN DE TIEMPOS

3.4.1.Software CMMS

Permite:

- Crear OT.
- Estimar tiempos.
- Registrar duración real.
- Planificar calendarios.

3.4.2. Hojas de cálculo

Excel o Google Sheets para:

- Diagramas de Gantt.
- Tablas de tiempos.
- Estrategias de asignación de recursos.

3.4.3. Aplicaciones de diagramación

- GanttProject.
- LibreProject.
- MS Project (profesional).

3.5. CONTROL Y SEGUIMIENTO DEL TIEMPO PROGRAMADO

3.5.1. Comparación entre tiempo estimado y tiempo real

Permite mejorar la precisión de futuras estimaciones.

3.5.2. Registro mediante órdenes de trabajo

Registra:

- Inicio y fin de intervención.
- Técnicos participantes.
- Incidencias.

3.5.3.Indicadores relacionados con tiempos

- MTTR: Tiempo medio de reparación.
- Tiempo medio de revisión.
- Cumplimiento de tareas planificadas.

3.6. INTRODUCCIÓN A LOS DIAGRAMAS DE PROGRAMACIÓN Y CONTROL

3.6.1.¿Qué son los diagramas de programación?

Son herramientas visuales que permiten **planificar**, **organizar y controlar** el desarrollo de tareas en un proyecto de mantenimiento.

3.6.2.¿Para qué sirven?

- Representar actividades en el tiempo.
- Ordenar tareas según dependencias.
- Controlar la duración del proyecto.
- Asignar recursos técnicos y materiales.
- Detectar retrasos y cuellos de botella.

3.6.3. Importancia en el mantenimiento electrónico

- Facilitan la planificación de inspecciones, revisiones o puestas en marcha.
- Permiten coordinar tareas de varios técnicos simultáneos.
- Ayudan a evitar paradas prolongadas y retrasos.

3.7. DIAGRAMA DE GANTT

3.7.1. Concepto

El **diagrama de Gantt** es una herramienta gráfica que representa las tareas del proyecto en una **línea temporal**, mostrando su duración y solapamientos.

3.7.2. Elementos

- Lista de tareas (vertical).
- Calendario o escala temporal (horizontal).
- Barras que indican duración.
- Dependencias entre tareas.
- Recursos asignados (opcional).

3.7.3. Ventajas

- Fácil de interpretar.
- Permite ver tareas simultáneas.
- Útil para mantenimiento preventivo programado.

3.7.4. Aplicación en mantenimiento electrónico

- Programación semanal del taller.
- Planificación trimestral de revisiones de cuadros eléctricos.

Cronograma de puesta en marcha de un PLC o sensor.

3.8. DIAGRAMAS PERT (PROGRAM EVALUATION AND REVIEW TECHNIQUE)

3.8.1. Concepto

PERT es una técnica basada en una **red de nodos y flechas**, utilizada para planificar proyectos con incertidumbre en los tiempos.

3.8.2. Características

- Usa tiempos estimados:
 - Optimista (TO)
 - Probable (TM)
 - Pesimista (TP)
- Cálculo del tiempo esperado:

$$TE = (TO + 4 \cdot TM + TP) / 6$$

3.8.3. Ventajas

- Muy útil cuando los tiempos no son exactos.
- Adaptado a tareas complejas como pruebas, programación o integración.

3.8.4. Aplicación en mantenimiento electrónico

- Planificación de una puesta en marcha con incertidumbre en calibraciones.
- Proyectos de implantación de sistemas de control o redes industriales.

3.9. MIP – Métodos de programación integrados (o diagramas de red)

3.9.1. Concepto

Son métodos que representan las tareas como **nodos o flechas** dentro de una red conectada, donde cada conexión indica la dependencia entre actividades.

3.9.2. Elementos

- Nodos: puntos de inicio/fin de tareas.
- Actividades: duración estimada.
- **Dependencias:** tareas que deben completarse antes de iniciar otras.

3.9.3. Ventajas

- Permiten identificar de forma precisa el camino crítico.
- Representan mejor las dependencias complejas que un Gantt.

3.10. DETERMINACIÓN DEL CAMINO CRÍTICO (CPM – CRITICAL PATH METHOD)

3.10.1. Concepto

El camino crítico es la secuencia de tareas que determina la duración total del proyecto. Si una de ellas se retrasa → el proyecto entero se retrasa.

3.10.2. Cómo se determina

- 1. Listar todas las actividades.
- 2. Establecer sus duraciones.
- 3. Definir **dependencias** entre ellas.
- 4. Construir el diagrama de red.
- 5. Calcular:
 - TE (Early Start/Finish)
 - TL (Late Start/Finish)
 - Holgura = TL TE
- 6. Las tareas con holgura = 0 forman el camino crítico.

3.10.3. Importancia

- Identifica tareas prioritarias.
- Muestra dónde no puede haber retrasos.
- Ayuda a reasignar recursos.

3.10.4. Ejemplo aplicado al mantenimiento

En una puesta en marcha:

- T1: Inspección visual
- T2: Comprobación eléctrica
- T3: Configuración PLC
- T4: Prueba de comunicación
- T5: Prueba funcional

Si T3 \rightarrow T4 \rightarrow T5 son críticas, cualquier retraso en T3 amplía el tiempo total.

3.11. TIEMPOS DE EJECUCIÓN EN PROYECTOS DE MANTENIMIENTO

3.11.1. Tipos de tiempos

Tipo	Descripción
Estimado	Tiempo previsto según experiencia o histórico
Real	Tiempo empleado durante la intervención
Early Start (TE)	Inicio más temprano posible
Late Start (TL)	Inicio más tardío sin afectar al proyecto
Holgura	Margen disponible

3.11.2. Métodos para estimar tiempos

- Basados en experiencia.
- Basados en históricos del CMMS.
- Estimación PERT (TO/TM/TP).
- Desglose en subtareas.
- Estimación por recursos.

3.11.3. Influencia de recursos en tiempos

- Número de técnicos disponibles.
- Herramientas clave (osciloscopio, calibrador).
- Accesibilidad al equipo.
- Tiempo de seguridad (LOTO, descargas, protecciones).

3.12. RELACIÓN ENTRE GANTT, PERT Y CAMINO CRÍTICO

Gantt → visualización y calendario

PERT → análisis de tiempos inciertos

CPM (camino crítico) → duración mínima del proyecto

Red MIP → dependencias complejas

Todos se combinan para planificar eficazmente el mantenimiento.

3.13. CONTROL DEL MANTENIMIENTO

3.13.1. Concepto

El **control del avance del mantenimiento** es el proceso mediante el cual se verifica que las intervenciones planificadas:

- Se realizan en el tiempo previsto.
- Cumplen los procedimientos técnicos.
- Emplean los recursos correctos.
- Resuelven las incidencias detectadas.

3.13.2. Objetivos del control

- Garantizar que el plan preventivo y correctivo se ejecuta.
- Evitar retrasos y paradas prolongadas.
- Detectar desviaciones respecto a lo planificado.
- Tomar decisiones correctivas a tiempo.
- Mejorar el rendimiento del equipo técnico.

3.14. LANZAMIENTO DEL MANTENIMIENTO

3.14.1. ¿Qué es el lanzamiento?

El **lanzamiento del mantenimiento** es el momento en que se **activan oficialmente** las tareas planificadas, asignándolas a los técnicos y programando su ejecución.

3.14.2. Actividades del lanzamiento

- Revisión del plan semanal o mensual.
- Creación de órdenes de trabajo (OT).
- Asignación de técnicos y equipos.
- Confirmación de repuestos disponibles.
- Validación de herramientas e instrumentación.
- Revisión de condiciones de seguridad.

3.14.3. Documentación implicada

- Calendario de mantenimiento.
- OT generadas por el CMMS.
- Gamas de mantenimiento.
- Protocolos de inspección o pruebas.
- Fichas técnicas y manuales.

3.15. PROCEDIMIENTOS PARA EL SEGUIMIENTO Y CONTROL

3.15.1. Concepto

El **seguimiento** consiste en monitorizar el progreso de las tareas mientras se ejecutan.

El **control** compara el progreso con lo planificado y corrige desviaciones.

3.15.2. Herramientas de seguimiento

a) Órdenes de trabajo (OT)

- Indican qué tarea se realiza.
- Permiten registrar tiempos y recursos reales.

b) Software CMMS / XMAC

- Gestiona el avance de las tareas.
- Mide cumplimiento del plan.
- Genera indicadores.

c) Diagramas de Gantt

- Muestran tareas en curso.
- Visualizan retrasos y solapamientos.

d) Reuniones diarias/semana de coordinación

- Ajustes rápidos.
- Redistribución de prioridades.

3.15.3. Indicadores de seguimiento (KPIs)

Indicador	Qué mide	Utilidad
% OT completadas	Cumplimiento del plan	Control preventivo
Tiempo real vs. estimado	Eficiencia	Ajustar gamas
MTTR	Reparación	Rapidez técnica
MTBF	Fallos	Fiabilidad
Disponibilidad	% tiempo operativo	Nivel de mantenimiento

3.15.4. Actividades de control del avance

- Comparar avance real vs. programado.
- Registrar desviaciones de tiempo.
- Revisar recursos insuficientes.

- Detectar acumulación de OT pendientes.
- Analizar causas de retrasos.

3.15.5. Documentación de control

- Informes diarios/semanales.
- Históricos de mantenimiento.
- Registros de incidencias.
- Informes de tiempos reales.
- Checklists de inspección.

3.16. DISTRIBUCIÓN DE RECURSOS

3.16.1. Concepto

Asignar los recursos disponibles (técnicos, herramientas, materiales) de manera que las tareas se realicen sin retrasos ni cuellos de botella.

3.16.2. Recursos humanos

- Número de técnicos disponibles.
- Competencias y formación.
- Turnos y horarios.
- Especialización según tarea (PLC, sensórica, electrónica...).

3.16.3. Recursos materiales

- Herramientas necesarias (multímetro, osciloscopio...).
- Repuestos críticos (sensores, relés, fusibles...).
- Acceso a documentación técnica.
- Equipos auxiliares (banco de pruebas, analizadores...).

3.16.4. Técnicas para distribuir recursos

a) Priorización por criticidad

Los equipos más importantes se atienden primero.

b) Distribución según carga de trabajo

Cada técnico recibe una cantidad equilibrada de tareas.

c) Agrupación de tareas

Aprovechar desplazamientos y paradas previstas para múltiples intervenciones.

d) Reasignaciones dinámicas

Cambiar técnicos o materiales según necesidades reales.

e) Optimización mediante software

El CMMS asigna automáticamente tareas según disponibilidad.

3.17. CONTINGENCIAS EN EL MANTENIMIENTO

3.17.1. ¿Qué es una contingencia?

Una **contingencia** es un evento imprevisto que obliga a modificar el plan o detener temporalmente el proceso.

3.17.2. Tipos de contingencias

- Averías graves no planificadas.
- Falta de repuestos críticos.
- Ausencia de un técnico especializado.
- Condiciones del entorno inseguras.
- Fallo de herramientas o instrumentación.
- Cambios de prioridad por producción.

3.18. ALTERNATIVAS PARA GESTIONAR CONTINGENCIAS

3.18.1. Reprogramación

Mover tareas menos prioritarias para liberar técnicos o recursos.

3.18.2. Sustitución de personal

Asignar técnicos alternativos o contratar servicio externo.

3.18.3. Ajuste de recursos

- Pedidos urgentes de repuestos.
- Uso temporal de sustitutos funcionales.

3.18.4. Soluciones paliativas

Técnicas temporales para mantener el equipo operativo:

- Puente temporal.
- Configuración de emergencia.
- Reducción de carga.

3.18.5. Revisión del plan

Modificar gamas, frecuencias o criterios de asignación si la contingencia es frecuente.

3.18.6. Registro y análisis

Toda contingencia debe documentarse para:

- Mejorar la planificación futura.
- Actualizar históricos.
- Ajustar KPIs.

3.19. RELACIÓN ENTRE AVANCE, RECURSOS Y CONTINGENCIAS

El control del mantenimiento se basa en un ciclo continuo:

- 1. Planificación
- 2. Lanzamiento
- 3. Seguimiento
- 4. Control
- 5. Reasignación de recursos
- 6. Gestión de contingencias
- 7. Actualización del plan

Cada fase alimenta a la siguiente, creando un proceso de mejora continua.

3.20. USO DEL SOFTWARE EN EL MANTENIMIENTO

3.20.1. Digitalización del mantenimiento

La informática ha transformado el mantenimiento técnico al permitir:

- Registrar información de forma rápida.
- Automatizar tareas repetitivas.
- Planificar intervenciones de forma precisa.
- Controlar recursos en tiempo real.
- Generar históricos fiables.

3.20.2. ¿Por qué usar software en el mantenimiento electrónico?

- Equipos cada vez más complejos (PLC, sensores, redes industriales).
- Necesidad de documentar con precisión los parámetros.
- Mayor exigencia en seguridad y normativa.
- Optimización del tiempo de los técnicos.

3.21. TIPOS DE SOFTWARE UTILIZADO EN MANTENIMIENTO

3.21.1. CMMS / GMAO (Gestión del Mantenimiento Asistido por Ordenador)

Es el tipo de software más utilizado en empresas industriales.

Funciones principales:

- Planificar mantenimiento preventivo.
- Programar OT (Órdenes de Trabajo).
- Registrar tiempos reales y repuestos usados.
- Gestionar repuestos e inventarios.
- Analizar fallos y generar históricos.
- Crear informes de mantenimiento.

Ejemplos:

- Fracttal
- GIM
- Infor EAM
- Prisma
- SAP PM
- XMAC (nombre común en FP)

3.21.2. Software de planificación y programación visual

a) Diagramación y Gantt

Herramientas para crear cronogramas:

- MS Project
- GanttProject
- LibreProject
- Trello (con extensiones)

Permiten:

- Ver la duración de tareas.
- Identificar dependencias.
- Asignar técnicos.
- Calcular ruta crítica.

b) Planificadores de carga de trabajo

- Planificación semanal o mensual.
- Uso intensivo en talleres con varios técnicos.

Ejemplos:

- Monday.com
- Planner
- Notion (tablas + calendarios)

3.21.3. Software de diseño técnico relacionado con mantenimiento

a) Software eléctrico/electrónico

Permiten consultar y actualizar documentación técnica:

- AutoCAD Electrical
- EPLAN
- QElectroTech
- Orcad / Eagle / KiCAD (esquemas electrónicos)

b) Software de instrumentación

Para análisis de señales:

- Keysight BenchVue
- FlukeView
- Visualizadores de osciloscopio y registradores

3.21.4. Software de diagnóstico y programación

Muy utilizado en mantenimiento electrónico:

- Siemens TIA Portal (PLC Siemens)
- RSLogix (Allen Bradley)
- Codesys
- Schneider EcoStruxure
- Software de configuración de sensores y variadores
- Programas de monitorización de redes industriales

Permiten:

- Diagnóstico en tiempo real.
- Lectura de parámetros.

- Actualización de firmware.
- Pruebas de E/S y comunicación.

3.22. FUNCIONES ESENCIALES DEL SOFTWARE DE MANTENIMIENTO

3.22.1. Planificación del mantenimiento

El programa permite:

- Crear un plan preventivo con fechas y frecuencias.
- Definir gamas y procedimientos.
- Asignar recursos (técnicos y materiales).
- Estimar la duración de cada tarea.

3.22.2. Programación del mantenimiento

El software organiza las intervenciones:

- Generación automática de OT según calendario.
- Programación semanal/mensual.
- Reasignación en caso de incidencias.
- Gestión de prioridades (criticidad).
- Visualización mediante Gantt.

3.22.3. Control del mantenimiento y reparación

El software registra:

- Tiempos reales de ejecución.
- Fallos detectados.
- Repuestos utilizados.
- Técnicos que intervinieron.
- · Costes asociados.

Permite:

- Comparar tiempos estimados vs. reales.
- Evaluar el cumplimiento del plan.
- Analizar desviaciones.

3.23. MÓDULOS TÍPICOS DE UN SISTEMA INFORMÁTICO DE MANTENIMIENTO

3.23.1. Módulo de equipos

- Inventario de maquinaria y sistemas.
- Datos técnicos.
- Documentación asociada.
- Histórico de averías.

3.23.2. Módulo de OT (Órdenes de trabajo)

- Creación automática o manual.
- Asignación de técnicos.
- Tiempos planificados/empleados.
- Resultados y firma.

3.23.3. Módulo de repuestos y almacén

- Control de stock.
- Repuestos críticos.
- Avisos de mínimo.
- Trazabilidad.

3.23.4. Módulo de recursos humanos

- Capacidad y carga de trabajo de cada técnico.
- Control de horarios y disponibilidad.
- Competencias técnicas.

3.23.5. Módulo de informes y KPIs

Genera:

- MTBF
- MTTR
- Disponibilidad
- Tasa de cumplimiento
- Coste por equipo
- Gráficos de averías

3.24. BENEFICIOS DEL SOFTWARE EN MANTENIMIENTO ELECTRÓNICO

- Aumenta la disponibilidad del sistema.
- Reduce averías repetitivas.
- Optimiza tiempos y recursos.
- Facilita auditorías e inspecciones.
- Aporta información histórica y trazable.
- Reduce la carga administrativa manual.
- Mejora la toma de decisiones.
- Permite integrar señales y datos de control.

3.25. IMPLANTACIÓN BÁSICA DE UN SISTEMA INFORMÁTICO DE MANTENIMIENTO

3.25.1. Etapas

1. Análisis inicial

Identificación de equipos y criticidad.

2. Creación de inventario técnico

o Códigos, datos técnicos, documentación.

3. Definición de gamas y planes preventivos

o Tareas, tiempos, frecuencia.

4. Carga de datos en el software

o Inventario, OT, recursos y repuestos.

5. Formación del personal

o Técnicos, responsables, administradores.

6. Prueba y validación

Comparación entre tiempos reales y estimados.

7. Mejora continua

Ajuste de frecuencias y procedimientos.