INFRAESTRUCTURAS DE DESENVOLVIMIENTO DE MANTENIMIENTO ELECTRÓNICO.

UD1 – ORGANIZACIÓN/Y/ GESTIÓN DEL MANZENIMIENTO

UD1 – TEORÍA

Profesor: Javier Fraga Iriso

1 - Organización y gestión del mantenimiento

1.1. Introducción a la planificación del mantenimiento

1.1.1.Concepto

La planificación del mantenimiento consiste en organizar, programar y optimizar todas las tareas necesarias para conservar los sistemas, instalaciones y equipos electrónicos en condiciones óptimas de funcionamiento, minimizando fallos y costes.

1.1.2. Objetivos

- Garantizar la disponibilidad y fiabilidad de los equipos.
- Reducir el tiempo de parada no planificada.
- Asegurar la seguridad de las operaciones.
- Optimizar los recursos humanos y materiales.
- Documentar y controlar las intervenciones.

1.1.3. Importancia en el mantenimiento electrónico

En el mantenimiento electrónico, una buena planificación evita averías costosas en:

- Sistemas de control industrial (PLC, SCADA).
- Fuentes de alimentación.
- Redes de comunicación.
- Instrumentación y sensórica.

1.2. Procesos de la planificación del mantenimiento

La planificación es un **proceso continuo** que se estructura en fases ordenadas y repetitivas.

1.2.1. Análisis previo

- Inventario y codificación de equipos.
- Recogida de datos históricos (averías, repuestos, tiempos de parada).
- Evaluación del estado actual.

1.2.2. Definición de tareas

- Determinar qué tareas se deben realizar (inspección, sustitución, prueba, calibración).
- Identificar periodicidades y condiciones de intervención.

1.2.3. Programación temporal

- Asignación de fechas y frecuencias (diaria, semanal, mensual, anual).
- Elaboración del plan maestro o plan anual de mantenimiento.

1.2.4. Asignación de recursos

- **Humanos:** técnicos, especialistas, operarios.
- Materiales: herramientas, equipos de medida, repuestos.
- Económicos: presupuesto disponible.
- Infraestructurales: espacios, instalaciones auxiliares.

1.2.5. Ejecución del mantenimiento

- Aplicación de procedimientos establecidos.
- Control de calidad durante la intervención.
- Registro de resultados.

1.2.6. Seguimiento y mejora

- Análisis de indicadores de rendimiento (KPIs).
- Retroalimentación y actualización del plan.

1.3. Etapas del proceso de planificación

1.3.1.Identificación de equipos y activos

- Listado completo de equipos a mantener.
- Clasificación por criticidad (alta, media, baja).
- Asignación de códigos o etiquetas.

1.3.2. Definición de actividades de mantenimiento

Cada equipo debe tener asociadas las actividades necesarias según su función y riesgo.

Ejemplo (para un PLC):

Actividad	Descripción	Frecuencia
Limpieza de ventiladores	Eliminar polvo del módulo CPU	Trimestral
Comprobación de tensiones	Medición de 24 V y 5 V internos	Semestral
Verificación de comunicación	Test de red y backups	Anual

1.3.3. Estimación de tiempos de ejecución

- Determinar tiempo estándar para cada tarea.
- Identificar tareas que pueden realizarse en paralelo.
- Incluir tiempos de preparación y cierre.

1.3.4. Asignación de recursos

Cada actividad debe indicar:

- Número de técnicos requeridos.
- Herramientas específicas (multímetro, osciloscopio, etc.).
- Materiales y repuestos.
- Documentos de apoyo (fichas técnicas, planos, manuales).

1.3.5. Condiciones de seguridad

- Desconexión eléctrica y verificación de ausencia de tensión (LOTO).
- Uso de EPI (guantes dieléctricos, gafas, pulsera antiestática).
- Señalización de zonas de trabajo.
- Procedimientos de emergencia.

1.3.6.Control y registro

- Cumplimentar **órdenes de trabajo (OT)** con fecha, técnico, tarea y resultado.
- Actualizar bases de datos o software CMMS.
- Registrar desviaciones o incidencias.

1.4. Actividades de mantenimiento: caracterización

Cada actividad debe describirse mediante una **ficha técnica** o **plan de trabajo**, que incluya los siguientes elementos:

Campo	Descripción
Código de equipo	Identificación única del equipo
Actividad	Operación a realizar
Tipo de mantenimiento	Correctivo, preventivo, predictivo
Duración prevista	Tiempo estándar de ejecución
Recursos necesarios	Personal, herramientas, repuestos
Condiciones de seguridad	Medidas preventivas
Frecuencia	Periodicidad o condición de ejecución
Resultado esperado	Parámetros a comprobar
Responsable	Técnico o equipo encargado

1.5. Tipología de operaciones de mantenimiento electrónico

1.5.1. Operaciones típicas

- Medición de parámetros eléctricos o electrónicos.
- Sustitución de componentes o módulos.
- Calibración de instrumentos.
- Pruebas funcionales.
- Limpieza de elementos sensibles (ventiladores, conectores).
- Actualización de software o firmware.

1.5.2. Actividades complementarias

- Elaboración de informes técnicos.
- Control de stock de repuestos.
- Comunicación de incidencias.
- Formación interna y actualización técnica.

1.6. Representación temporal: planificación visual

- Diagramas de Gantt: planificación de tareas en el tiempo.
- Calendarios de mantenimiento: mensuales, trimestrales, anuales.
- Mapas de criticidad: identificación de equipos prioritarios.
- Gráficas de carga de trabajo: balance entre técnicos disponibles y tareas.

1.7. Control de resultados y mejora del plan

1.7.1. Indicadores de gestión (KPIs)

Indicador	Significado	Fórmula básica
MTBF	Tiempo medio entre fallos	Horas totales / nº fallos
MTTR	Tiempo medio de reparación	Tiempo total reparaciones / nº fallos
Disponibilidad (%)	Porcentaje de tiempo operativo	MTBF / (MTBF + MTTR) × 100

1.7.2. Revisión del plan

- Ajuste de frecuencias.
- Incorporación de nuevas técnicas (IoT, sensorización).
- Optimización de recursos según históricos.

1.8. Ejemplo práctico resumido

Caso: Mantenimiento preventivo de una fuente de alimentación industrial 24 VDC.

Tarea	Frecuencia	Recursos	Tiempo	Seguridad
Limpieza de ventilador y disipador	Trimestral	1 técnico + aire comprimido	30 min	Desconexión eléctrica
Verificación de tensiones de salida	Trimestral	Multímetro, 1 técnico	20 min	Bajo voltaje controlado
Sustitución preventiva de condensadores	Bianual	1 técnico, soldador, repuestos	1 h	Antiestático
Prueba funcional completa	Trimestral	2 técnicos	30 min	Supervisión

1.9. Introducción al mantenimiento

1.9.1. Concepto general

El **mantenimiento** es el conjunto de actividades técnicas, administrativas y de gestión destinadas a **conservar los equipos, sistemas e instalaciones** en condiciones adecuadas de funcionamiento, garantizando su **fiabilidad, disponibilidad y seguridad**.

En el ámbito electrónico, abarca desde la verificación de circuitos y sensores hasta la sustitución de componentes, calibración o actualización de software de control.

1.9.2. Importancia del mantenimiento en infraestructuras electrónicas

- Garantiza la operatividad continua de sistemas automatizados.
- Previene fallos eléctricos o electrónicos que pueden derivar en paradas de producción.
- Contribuye a la seguridad del personal y de las instalaciones.
- Optimiza los costes energéticos y de reparación.
- Prolonga la vida útil de los equipos.

1.10. Función y objetivos del mantenimiento

1.10.1. Función principal

Mantener los equipos electrónicos y sistemas en **condiciones de operación seguras**, **fiables y eficientes**, garantizando el cumplimiento de los parámetros de diseño.

1.10.2. Objetivos específicos

- **Disponibilidad:** asegurar que los equipos estén operativos cuando se necesiten.
- **Fiabilidad:** minimizar la probabilidad de fallo durante su funcionamiento.

- Seguridad: evitar riesgos eléctricos, mecánicos o térmicos.
- Conservación: prolongar la vida útil de los componentes electrónicos.
- Economía: reducir el coste total del mantenimiento (TCO).
- Calidad: mantener las condiciones de precisión y funcionamiento del sistema.

1.11. Tipos de mantenimiento

Existen distintas estrategias según el momento de intervención y la filosofía de gestión.

1.11.1. Mantenimiento correctivo

Definición: Es el que se realiza **después de que ocurre un fallo** o avería, para **restaurar el funcionamiento normal** del equipo.

Características

- Se ejecuta sin planificación previa.
- Aumenta los tiempos de parada no programada.
- Requiere una respuesta rápida.
- Coste de reparación normalmente más alto.

Ejemplos

- Sustitución de un fusible fundido en una fuente de alimentación.
- Reparación de una tarjeta electrónica averiada.
- Reprogramación de un PLC que ha perdido su configuración.

Ventajas

- Permite actuar directamente sobre el fallo.
- Útil en equipos no críticos o de bajo coste.

Inconvenientes

- Interrupciones imprevistas.
- Mayor estrés del personal técnico.
- Posibles daños secundarios en el sistema.

1.11.2. Mantenimiento preventivo

Definición: Es el conjunto de actividades **planificadas y periódicas** destinadas a **evitar la aparición de fallos** mediante inspecciones, revisiones o sustituciones programadas.

Características

- Basado en tiempo o uso (horas de servicio, ciclos, calendario).
- Se documenta en un plan de mantenimiento.
- Disminuye el número de averías imprevistas.

Ejemplos

- Limpieza periódica de ventiladores y filtros.
- Sustitución de condensadores cada cierto tiempo.
- Calibración de sensores cada seis meses.

Ventajas

- Reduce las paradas inesperadas.
- Mejora la disponibilidad y la fiabilidad.
- Facilita la planificación de recursos.

Inconvenientes

- Posibles sustituciones innecesarias.
- Mayor carga administrativa.
- Costes iniciales más altos que el correctivo.

1.11.3. Mantenimiento predictivo

Definición: Consiste en **vigilar parámetros de funcionamiento** y realizar la intervención **solo cuando se detectan síntomas de deterioro** o desviaciones.

Características

- Se basa en mediciones y diagnóstico continuo.
- Utiliza herramientas de monitorización electrónica o software CMMS.
- Interviene antes del fallo pero cuando hay indicios reales de fallo futuro.

Ejemplos

- Análisis de ruido o vibraciones en ventiladores.
- Medición de temperatura en fuentes con IR o sensores.
- Monitorización de la tensión de salida o del consumo.

Ventajas

- Mínimo tiempo de parada.
- Intervenciones optimizadas.
- Aumento de la vida útil del equipo.

Inconvenientes

- Requiere instrumentación y formación avanzada.
- Mayor inversión inicial.
- Necesidad de procesamiento de datos.

1.11.4. Mantenimiento paliativo

Definición: Consiste en **una reparación temporal** que **permite mantener operativo** el sistema **hasta poder realizar la reparación definitiva**.

Características

- Solución de emergencia o provisional.
- Se aplica para evitar una parada total o prolongada.
- Requiere un **seguimiento posterior** y sustitución definitiva.

Ejemplos

- Puente temporal en una pista dañada.
- Sustitución temporal de un sensor con otro genérico.
- Uso de ventilador externo mientras se repara el original.

Ventajas

- Evita interrupciones prolongadas.
- Permite planificar mejor la reparación final.

Inconvenientes

- Riesgo de fallo posterior si no se corrige.
- No soluciona la causa raíz del problema.

1.11.5. Mantenimiento productivo total (TPM)

Definición: El **Total Productive Maintenance (TPM)** o **mantenimiento productivo total** busca **involucrar a todo el personal** (operarios, técnicos y mandos) en la conservación y mejora de los equipos.

Objetivo principal

Aumentar la **eficiencia global del equipo (OEE)**, reduciendo pérdidas y averías mediante la **participación activa** de todos los niveles de la empresa.

Principios del TPM

- 1. Implicación total del personal.
- 2. Mantenimiento autónomo por parte de los operarios.
- 3. Mantenimiento planificado y preventivo.
- 4. Formación continua.
- 5. Mejora continua (Kaizen).
- 6. Seguridad y orden en el entorno (5S).

Ventajas

- Aumenta la disponibilidad y productividad.
- Crea conciencia de responsabilidad compartida.
- Mejora el ambiente y la cultura de trabajo.

Ejemplo

En una línea de montaje electrónica:

- Los operarios limpian, inspeccionan y avisan de anomalías.
- El equipo técnico coordina el mantenimiento preventivo y predictivo.
- Se registran indicadores OEE para medir el rendimiento global.

1.12. Comparativa entre tipos de mantenimiento

Tipo	Cuándo actúa	Planificación	Costo	Disponibilidad	Ejemplo
Correctivo	Después del fallo	No	Alto	Baja	Reparar fuente averiada
Preventivo	Según calendario	Sí	Medio	Alta	Limpieza mensual
Predictivo	Según condición	Sí (dinámica)	Medio	Muy alta	Monitorización de sensores
Paliativo	Temporal	Parcial	Bajo	Media	Solución provisional
TPM	Permanente	Total	Variable	Muy alta	Mantenimiento autónomo

1.13. Indicadores de eficacia

- MTBF (Mean Time Between Failures): Tiempo medio entre fallos.
- MTTR (Mean Time To Repair): Tiempo medio de reparación.
- **Disponibilidad:** % de tiempo que el equipo está operativo.
- OEE (Overall Equipment Effectiveness): mide la eficiencia total del equipo (usado en TPM).

1.14. Introducción: la importancia del análisis preventivo

El mantenimiento electrónico moderno no se basa solo en reparar averías, sino en **anticiparse a ellas**.

Para ello, es necesario identificar puntos críticos, establecer inspecciones periódicas, probar los sistemas, y documentar todas las intervenciones.

Objetivos principales:

- Detectar fallos potenciales antes de que causen daños.
- Optimizar los recursos de mantenimiento.
- Aumentar la fiabilidad de los equipos electrónicos.
- Crear un histórico técnico que sirva para mejorar futuras planificaciones.

1.15. Puntos críticos en los sistemas electrónicos

1.15.1. Definición

Los **puntos críticos** son aquellos elementos o zonas de un sistema electrónico cuya **falla provoca consecuencias graves**: parada del sistema, daño en equipos, pérdida de datos o riesgo para la seguridad.

1.15.2. Cómo identificar puntos críticos

- Análisis funcional del sistema (qué elementos son esenciales para su funcionamiento).
- 2. Análisis de riesgos (fallos que pueden afectar a seguridad o producción).
- 3. Evaluación de la frecuencia de fallo (históricos).
- 4. **Análisis de consecuencias** (coste, tiempo de parada, impacto).

1.15.3. Ejemplos típicos en mantenimiento electrónico

Equipo	Punto crítico	Consecuencia del fallo
Fuente de alimentación	Regulador interno	Pérdida total de tensión de control
PLC	Módulo de CPU / memoria	Paro completo del sistema
Sensor de temperatura	Fallo de lectura	Control erróneo de proceso
Ventilador / disipador	Bloqueo	Sobrecalentamiento
Cableado / conectores	Falso contacto	Fallos intermitentes

1.16. Previsión de averías

1.16.1. Concepto

La **previsión de averías** consiste en **detectar señales tempranas** de deterioro o mal funcionamiento antes de que se produzca el fallo.

Se basa en la monitorización, históricos y técnicas predictivas.

1.16.2. Herramientas y métodos de previsión

- Monitorización electrónica: registro de temperaturas, tensiones, corrientes, vibraciones.
- Termografía infrarroja: detección de puntos calientes.
- Análisis de consumo eléctrico: desviaciones frente a valores normales.
- Control de horas de servicio o ciclos.
- Sistemas de alerta o autodiagnóstico (Self Test).

1.16.3. Ejemplo aplicado

En una fuente conmutada, si el **rizado de salida aumenta progresivamente**, es indicativo de **condensadores deteriorados**.

→ Acción preventiva: sustituir antes de que provoquen fallo completo.

1.17. Inspecciones y revisiones periódicas

1.17.1. Definición

Las **inspecciones** son **observaciones o comprobaciones programadas** que permiten detectar anomalías visibles o medibles.

Las revisiones son intervenciones más detalladas, que incluyen ajustes o calibraciones.

1.17.2. Tipos de inspecciones

Tipo	Frecuencia	Finalidad
Visual	Diaria / semanal	Detectar suciedad, cables sueltos, componentes dañados
Funcional	Mensual / trimestral	Verificar que el sistema responde correctamente
Instrumental	Semestral / anual	Medir parámetros eléctricos o electrónicos
Seguridad	Anual	Comprobar protecciones, masas, aislamiento

1.17.3. Ejemplos prácticos

- Revisión de ventiladores y limpieza cada mes.
- Verificación de tensiones de salida cada trimestre.
- Calibración de sensores de temperatura cada seis meses.
- Inspección de bornes y conexiones cada año.

1.17.4. Beneficios

- Detección temprana de anomalías.
- Reducción de averías graves.
- Cumplimiento de normativa y auditorías técnicas.

1.18. Protocolos de pruebas

1.18.1. Concepto

Un protocolo de pruebas es un procedimiento normalizado que establece cómo y cuándo realizar pruebas de funcionamiento para verificar el correcto estado del equipo.

1.18.2. Contenido típico de un protocolo

Elemento Descripción

Identificación del equipo	Nombre, código o ubicación
Objetivo de la prueba	Qué se quiere comprobar
Procedimiento	Pasos a seguir
Instrumentación	Herramientas o equipos de medida
Valores esperados	Rangos o tolerancias
Resultado	Conforme / No conforme
Responsable y fecha	Registro de ejecución

1.18.3. Ejemplos de pruebas en electrónica

- Prueba de continuidad en líneas de control.
- Medida de aislamiento en cuadros eléctricos.
- Test funcional de sensores mediante simulación.
- Verificación de comunicaciones (red RS-485, Ethernet).
- Prueba de carga en fuentes de alimentación.

1.19. Históricos de intervenciones de mantenimiento

1.19.1. Definición

El **histórico de mantenimiento** es el **registro detallado** de todas las intervenciones realizadas sobre un equipo a lo largo de su vida útil.

1.19.2. Información que debe contener

Dato	Descripción
Fecha y hora	Momento de la intervención
Tipo de mantenimiento	Correctivo, preventivo, predictivo
Tarea realizada	Descripción técnica
Personal responsable	Técnico o equipo
Materiales utilizados	Repuestos, consumibles
Resultado	Correcto / pendiente / con incidencia
Tiempo de intervención	Duración total
Observaciones	Notas relevantes

1.19.3. Utilidad de los históricos

- Detectar patrones de averías repetitivas.
- Evaluar la eficacia del plan de mantenimiento.
- Calcular indicadores de fiabilidad (MTBF, MTTR).
- Servir como base documental para auditorías.
- Facilitar la planificación futura de revisiones.

1.19.4. Ejemplo de registro real

Equipo	Fecha	Tipo	Acción	Tiempo	Resultado
PLC Siemens S7-1200	10/01/25	Preventivo	Copia programa y limpieza	1 h	ОК
Fuente 24V	15/03/25	Correctivo	Sustitución condensadores	2 h	OK
Sensor temperatura	02/06/25	Predictivo	Calibración	0,5 h	OK

1.20. Relación entre inspecciones, protocolos y registros

La gestión moderna del mantenimiento electrónico integra tres pilares:

- 1. **Inspección** → Detección de anomalías.
- 2. **Protocolo de pruebas** → Verificación técnica estandarizada.
- 3. **Histórico** → Documentación y aprendizaje continuo.

Todo forma parte del ciclo de mejora continua del mantenimiento.

1.21. Indicadores de seguimiento

Algunos indicadores (KPIs) útiles para evaluar la eficacia del sistema de inspección y revisión:

Indicador	Fórmula	Interpretación
% inspecciones realizadas	(Inspecciones realizadas / planificadas) × 100	Nivel de cumplimiento
% equipos sin fallos	(Equipos sin incidencias / total equipos) × 100	Eficacia de mantenimiento
Nº averías repetidas	Conteo mensual	Señal de punto crítico no resuelto
Tiempo medio de revisión	Σ tiempos / nº equipos	Eficiencia del proceso

CS Mantenimiento Electrónico – Infraestructuras Desenvolvimiento Mantenimiento Electrónico