
UD3. GENERADORES

1.- Pilas Eléctricas

Las pilas eléctricas son elementos que convierten la energía que se produce en una reacción química en energía eléctrica.

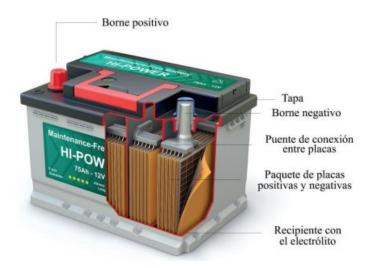
El tipo de corriente que produce una pila es de corriente continua.

El principal inconveniente que nos encontramos con las pilas es que una vez agotado su combustible químico, se vuelven inservibles y hay que desecharlas.

Características de las pilas

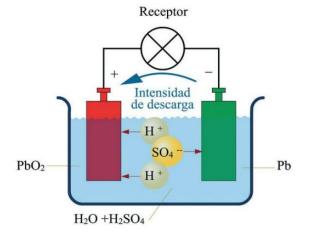
Fuerza electromotriz: la f.e.m. de la pila es la que se mide con un voltímetro conectado entre los electrodos de la pila.

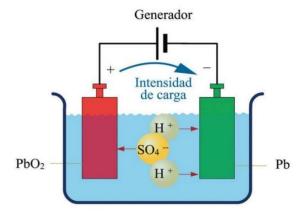
Capacidad: cantidad total de electricidad que puede suministrar la pila hasta agotarse. Se mide en amperios-hora.


Resistencia interna: este valor suele ser del orden de algunas décimas de ohmio.

2.- Acumuladores

El principio de funcionamiento de los acumuladores es similar al de las pilas eléctricas (dos electrodos de diferente constitución sumergidos en un electrólito).


La diferencia entre pilas y acumuladores está en que estos se pueden recargar aplicando entre sus electrodos una diferencia de potencial.


Acumuladores de Plomo

Estos acumuladores constan de dos placas de plomo sumergidas en un electrólito formado por una disolución de agua destilada más ácido sulfúrico (H₂SO₄ + H₂O).

Acumulador de plomo cargado en estado de descarga.

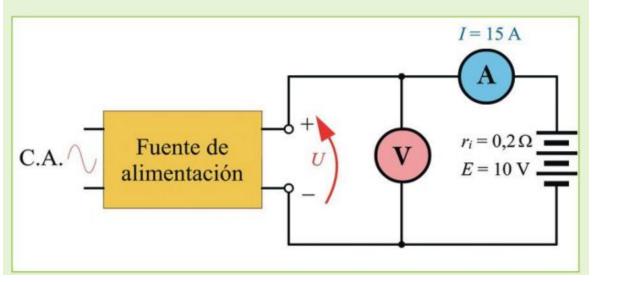
Acumulador de plomo descargado en estado de carga.

Capacidad de un acumulador

La capacidad de un acumulador nos indica la cantidad de electricidad que almacena. Esta se mide en amperios · hora (Ah) y se calcula mediante la expresión:

$$Q = I \cdot t$$

Una batería de acumuladores de plomo con una capacidad de 92 Ah se descarga en 10 horas. Determina la corriente media de descarga.


$$Q = I \cdot t$$
, despejando
 $I = \frac{Q}{t} = \frac{92}{10} = 9.2 \text{ A}$

Tensión y corriente de carga de un acumulador

Para cargar una batería de acumuladores hay que conectar una fuente de alimentación de C.C. que proporcione una tensión superior a la nominal de la batería, situando el polo positivo de la fuente de alimentación con el positivo de la batería, y el negativo de la fuente con el negativo de la batería.

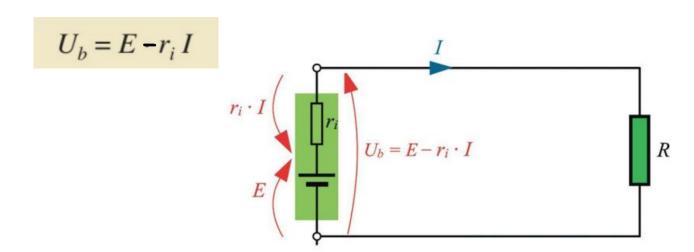
En este proceso, es importante vigilar que la corriente no supere los valores máximos recomendados por el fabricante. Este valor suele estar en torno al 10% del valor de la capacidad del acumulador. Así, por ejemplo, para un acumulador con 80 Ah sería aconsejable no superar los 8 amperios de corriente de carga.

En el circuito que se muestra en la Figura aparece el sistema de carga de una batería de acumuladores de un automóvil. Averigua la tensión que debe proporcionar la fuente de alimentación (F.A.) para conseguir que la intensidad de carga de la batería sea de 15 A, teniendo en cuenta para ello que la resistencia interna de la misma es 0,2 Ω y que la fuerza electromotriz en el actual estado de carga es de 10 V.

Si aplicamos la segunda ley de Kirchhoff al circuito cerrado formado, tendremos que la tensión (U) que tiene que proporcionar la fuente de alimentación será la suma de la f.e.m. (E) de la batería más la caída de tensión ($r \cdot I$) que se produce en la resistencia interna:

$$U = E + r \cdot I = 10 + 0.2 \cdot 15 = 13 \text{ V}$$

Acumuladores de ion-litio


La ventaja de las baterías de ion-litio es que no se basan en reacciones químicas que descomponen los electrodos, sino en iones de litio que fluyen de un lado a otro entre el ánodo y el cátodo.

3.- Conexión de pilas y acumuladores

Tensión en bornes del generador

Cuando el generador suministra corriente al circuito exterior se produce una cierta caída de tensión en la resisten- cia interna del generador, de tal forma que la tensión que aparece en bornes del generador es menor que la f. e. m.

Potencia y rendimiento del generador

La potencia total que cede el generador al circuito será la suma de la potencia que se pierde en la resistencia interna más la que aparece en la carga.

Potencia perdida por el generador: Potencia útil cedida a la carga:

$$P_p = r_i I^2$$

$$P_u = U_b I$$

Potencia total cedida por el generador:

$$P_T = E \cdot I$$

$$P_T = P_u + P_p$$

El rendimiento es la relación que existe entre la potencia útil que suministra el generador al circuito y la potencia total que este desarrolla. Se representa por la letra griega η. Si expresamos el rendimiento porcentualmente, tendremos que:

$$\eta_{\text{eléctrico}} = \frac{P_u}{P_T} 100$$

Una batería de acumuladores de automóvil posee una f.e.m. de 12 V y una resistencia interna de 0,2 Ω . Determina la tensión que aparecerá en bornes de esa batería cuando se la conecte a una carga resistiva de 3 Ω . Haz un balance de las potencias entregadas por el generador y determina el rendimiento eléctrico.

la conecte a una carga resistiva de 3
$$\Omega$$
. Haz un balance de las potencias entregadas por el generador y determina el rendimiento eléctrico.

$$I = \frac{E}{R + r_0} = \frac{12}{3 + 0.2} = 3,75 \text{ A}$$

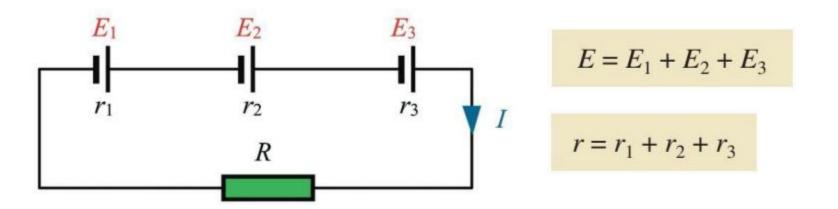
$$U_b = E - r_i I = 12 - 0.2 \cdot 3.75 = 11.25 \text{ V}$$

 $P_p = r_i I^2 = 0.2 \cdot 3.75^2 = 2.8 \text{ W}$

 $P_{II} = U_b I = 11,25 \cdot 3,75 = 42.2 \text{ W}$

$$P_T = E \cdot I = 12 \cdot 3,75 = 45 \text{ W}$$

el generador, 93,8 W son útiles.


Este resultado nos indica que, de cada 100 W que produce

El rendimiento eléctrico será, entonces:
$$\eta_{\text{eléctrico}} = \frac{P_u}{100} = \frac{42,2}{100}$$

$$\eta_{\text{eléctrico}} = \frac{P_u}{P_T} \ 100 = \frac{42,2}{45} \ 100 = 93,8 \%$$

Conexión de generadores en serie

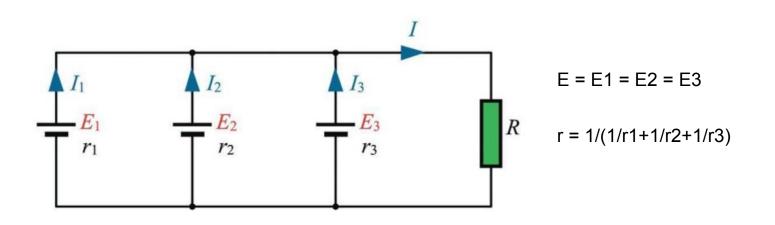
La conexión de generadores en serie se utiliza cuando queremos aumentar la tensión de salida. Esta forma de conexión es muy utilizada en las baterías de acumuladores, donde se consigue la tensión de salida buscada a base de conectar varios acumuladores en serie.

Una batería está compuesta por 6 acumuladores conectados en serie. La f.e.m. de cada acumulador es de 1.5 V y su resistencia interna de 0,1 Ω . Calcula: a) la corriente y tensión que aparecerá al conectar una carga de 5 Ω de resistencia; b) la tensión en bornes en vacío (sin conectar carga); c) intensidad si se cortocircuita la carga (unir eléctricamente mediante un conductor los dos terminales de la batería).

$$E = E_1 + E_2 + ... + E_6 = 6 \cdot 1,5 = 9 \text{ V}$$
 b) $U_b = E - rI = 9 - 0,6 \cdot 0 = 9 \text{ V}$

$$r = r_1 + r_2 + \dots + r_6 = 6 \cdot 0, 1 = 0, 6 \Omega$$

$$I = \frac{E}{R+r} = \frac{9}{5+0,6} = 1,61 \text{ A}$$


$$U = R \cdot I = 5 \cdot 1,61 = 8 \text{ V}$$

$$I_{cc} = \frac{E}{R+r} = \frac{9}{0+0.6} = 15$$

$$,61 = 8$$
 V

Conexión de generadores en paralelo

La conexión de generadores en paralelo se utiliza cuando queremos aumentar la corriente de salida manteniendo la tensión constante.

Se conectan en paralelo tres generadores de 12 V de f.e.m. y 0,3 Ω de resistencia interna. Determina la intensidad y tensión que aparecerá en los terminales del conjunto al conectar una resistencia de 4 Ω . ¿Qué corriente aporta cada generador?

Determinaremos primero la f.e.m. y la resistencia interna

 $E=E_1=E_2=E_3=12 \; {\rm V}$ Como las resistencias están conectadas en paralelo y son

Como las resistencias están conectadas en paralelo y son iguales:

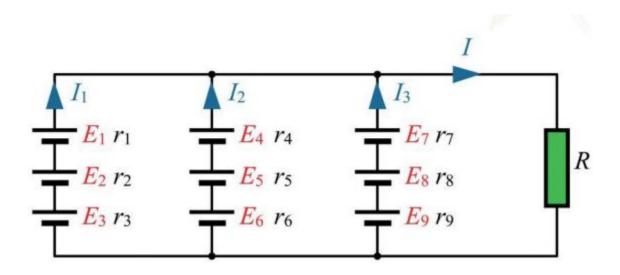
$$r = \frac{0.3}{3} = 0.1 \Omega$$

equivalente del acoplamiento:

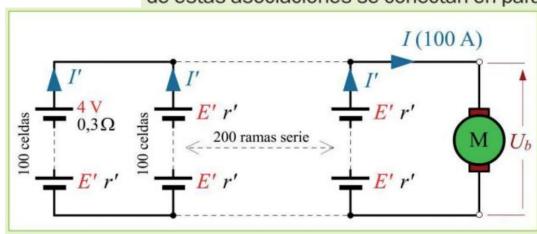
De lo que resulta que el acoplamiento en paralelo de los tres generadores equivale a uno solo de 12 V de f.e.m. y $0.1~\Omega$ de resistencia interna.

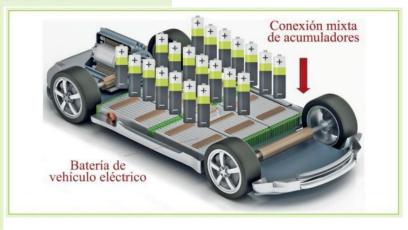
$$I = \frac{E}{R+r} = \frac{12}{4+0.1} = 2,93 \text{ A}$$

La tensión que aparece en los terminales del conjunto de generadores es:


$$U_b = E - rI = 12 - 0.1 \cdot 2.93 = 11.7 \text{ V}$$

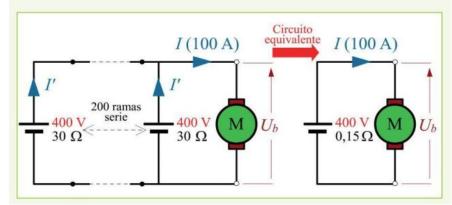
La corriente que suministra cada generador es:


$$I_1 = I_2 = I_3 = \frac{I}{3} = \frac{2,93}{3} = 0,98 \text{ A}$$


Conexión mixta de generadores

La conexión mixta de generadores es necesaria cuando se quiere aumentar la tensión e intensidad de corriente del conjunto. Esta configuración resulta imprescindible para la interconexión de paneles solares y la construcción de potentes baterías para el vehículo eléctrico.

La batería de un vehículo eléctrico está constituida por 20.000 acumuladores de ion-litio de 4 V de f.e.m.; 0,3 Ω de resistencia interna, y 3 Ah de capacidad. Los acumuladores se conectan en serie en grupos de 100. A su vez, 200 de estas asociaciones se conectan en paralelo



Calcula:

- a) Las características eléctricas de la batería en su conjunto.
- b) En el caso de alimentar un motor eléctrico que demande una intensidad de 100 A, determina la intensidad que proporciona cada uno de los acumuladores, la tensión total de salida, la potencia entregada al motor y el tiempo total de descarga de la batería.

a) La tensión y resistencia interna resultante de cada una de las agrupaciones de 100 acumuladores conectados en serie será de (Figura 8.21):

$$E_{\rm s} = 100 \cdot 4 \text{ V} = 400 \text{ V}$$

 $r_{\rm s} = 100 \cdot 0.3 \Omega = 30 \Omega$

La tensión y resistencia interna resultante de los 200 grupos serie conectados en paralelo será de:

$$E_T = E_s = 400 \text{ V}$$
 $r_T = \frac{r_s}{n_{agrupaciones}} = \frac{30}{200} = 0.15 \text{ C}$

La capacidad de cada acumulador de 3 Ah también se puede expresar en términos de energía eléctrica:

$$Wh = P \cdot t = E \cdot I \cdot t = 4 \text{ V} \cdot 3 \text{ A} \cdot 1 \text{ h} = 12 \text{ Wh}$$

La energía eléctrica total que puede aportar esta batería será de:

20.000 celdas · 12 Wh = 240.000 Wh = 240 kWh

agrupaciones en serie y, por tanto, por cada acumulador, será de: I' = 100/200 = 0.5 A

b) Cuando la batería proporcione 100 A al motor, la inten-

sidad de corriente que fluye por cada una de las 200

tran 100 A la calculamos teniendo en cuenta los valores de f.e.m. y resistencia interna totales del conjunto de acumuladores:

 $P_{II} = U_b I = 385 \cdot 100 = 38.500 \text{ W} = 38.5 \text{ kW}$

$$Ub = E - r_T I = 400 - 0.15 \cdot 100 = 385 \text{ V}$$

La potencia útil entregada al motor será:

 $P_{II} = E I = 400 \cdot 100 = 40.000 \text{ W} = 40 \text{ kW}$

a partir de su capacidad total expresada en kWh: t = O (kWh) / P (kW) = 240 kWh / 40 kW = 6 h

El tiempo de descarga de la batería lo podemos calcular

Podríamos llegar al mismo resultado teniendo en cuenta la capacidad de cada celda (3 Ah) y la corriente que suministra cada una de las mismas (0,5 A):

$$t = Q/I = 3 \text{ Ah}/0.5 \text{ A} = 6 \text{ h}$$

Una batería de acumuladores de plomo con una capacidad de 110 Ah alimenta un tubo fluorescente de 20 W. Si la tensión media en el proceso de descarga es de 12 V, determina el tiempo de descarga de la misma.

$$I = \frac{P}{U} = \frac{20}{12} = 1,67 \text{ A}$$

 $Q = I \cdot t \implies t = \frac{Q}{I} = \frac{110}{1.67} = 65,87 \text{ h}$

terísticas iguales, siendo la f. e. m. de cada uno 2 voltios y su resistencia interna de 0,12 ohmios. Calcula:

a) Tensión en bornes en vacío.

Se conectan en serie 10 generadores de C.C. de carac-

- b) Tensión y corriente si se conecta una carga de 8 ohmios.
- c) Rendimiento eléctrico del conjunto de generadores para dicha carga.
- d) Corriente de cortocircuito.e) Tensión en bornes del conjunto cuando suministra
- una corriente de 2 amperios.

$$E_T = \sum E = 10 \cdot 2V = 20 \text{ V}$$

 $r_T = \sum r = 10 \cdot 0.12 = 1.2 \Omega$

a) Tensión en bornes en vacío =
$$E_T = 20 \text{ V}$$

a) Tensión en bornes en vacío =
$$E_T = 20 \text{ V}$$

a) Tensión en bornes en vacío =
$$E_T = 20 \text{ V}$$

b) $I = \frac{E_T}{r_0 + R} = \frac{20}{1.2 + 8} = 2,18 \text{ A}$

 $U_h = E_T - r_T I = 20 - 1.2 \cdot 2.18 = 17.4 \text{ V}$

c) $P_T = E_T I = 20 \cdot 2.18 = 43.6 \text{ W}$

 $P_{\nu} = U_{\nu}I = 17.4 \cdot 2.18 = 37.9 \text{ W}$

 $\eta = \frac{P_u}{P_u} 100 = \frac{37.9}{43.6} 100 = 86.9\%$

e) $U_b = E_T - r_T I = 20 - 1.2 \cdot 2 = 17.6 \text{ V}$

d) $I_{cc} = \frac{E_T}{r_c} = \frac{20}{1.2} = 16,67 \text{ A}$

Resuelve las mismas cuestiones planteadas en la actividad anterior si en vez de conectar los generadores en serie los acoplamos en paralelo.

en serie los acoplamos en paralelo.
$$E_r = E = 2V$$

en serie los acoplamos en paralelo.
$$E_{r} = E = 2 \, \mathrm{V}$$

$$E_T=E=2\,\mathrm{V}$$

$$r_T=\frac{r}{r}=\frac{0.12}{10}=0.012\,\Omega$$

$$E_T = E = 2 \text{ V}$$

$$r_T = \frac{r}{n} = \frac{0,12}{10} = 0,012 \Omega$$

 $U_h = E_T - r_T I = 2 - 0.012 \cdot 0.25 = 1.99 \text{ V}$

a) $U_{h \text{ varia}} = E_T = 2V$

b) $I = \frac{E_T}{r_1 + R} = \frac{2}{0.012 + 8} = 0.25 \text{ A}$

 $P_{\rm o} = U_{\rm h}I = 1.99 \cdot 0.25 = 0.497 \,\rm W$

 $\eta = \frac{P_u}{P_o} 100 = \frac{0,497}{0.5} 100 = 99,4\%$

e) $U_b = E_T - r_T I = 2 - 0.012 \cdot 2 = 1.98 \text{ V}$

c) $P_T = E_T I = 2 \cdot 0.25 = 0.5 \text{ W}$

d) $I_{cc} = \frac{E_T}{r_c} = \frac{2}{0.012} = 166 \,\text{A}$

$$E_T = E = 2 \text{ V}$$

$$r_T = \frac{r}{n} = \frac{0,12}{10} = 0,012 \Omega$$

Una batería de acumuladores está formada por 10 elementos conectados en serie de 2,5 V y 0,015 Ω . Se conecta un receptor entre sus extremos y se miden 17,5 V. Determina:

- a) Intensidad; resistencia y potencia de la carga.
- b) Potencia útil cedida por cada generador.

$$V = 25 V$$

$$5 = 0.15 \Omega$$

$$E_T = \sum E = 10 \cdot 2.5 \text{ V} = 25 \text{ V}$$

 $r_T = \sum r = 10 \cdot 0.015 = 0.15 \Omega$

$$r_T = \sum r = 10 \cdot 0.015 = 0.15 \Omega$$

$$U_b = E - r_T I \Rightarrow I = \frac{E - U_b}{r_T} = \frac{25 - 17.5}{0.15} = 50 \text{ A}$$

$$R = \frac{U_b}{I} = \frac{17.5}{50} = 0.35 \Omega$$

$$I = 50$$

 $P = U_b \cdot I = 17.5 \cdot 50 = 875 \text{ W}$

b)

$$P'_{r} = P'_{r} - P'_{p} = EI - rI^{2} = 2.5 \cdot 50 - 0.015 \cdot 50^{2} = 87.5 \text{ W}$$