UD1.2 POTENCIA Y ENERGÍA ELÉCTRICA

1.- Potencia Eléctrica

La unidad de potencia eléctrica es el vatio (W). Si nos preguntan qué lámpara luce más, una de 60 W o una de 40 W, la respuesta sería muy clara: la de 60 W, que es la que más potencia posee. Pero ¿qué es la potencia eléctrica?

$$=\frac{E}{t}$$

P = Potencia en vatios (W).

E = Energ'ia en julios (J).t = Tiempo en segundos (s).

$$Potencia = \frac{Energía}{Tiempo}$$

La potencia eléctrica es el producto de la tensión por la intensidad de la corriente.

$$P = U \cdot I$$

$$I = \frac{U}{R}$$

$$P = U \frac{U}{R} = \frac{U^2}{R}$$

$$P = \frac{U^2}{R}$$

 $P = U \cdot I$

$$P = U \cdot I \qquad P = R \cdot I \cdot I$$

$$U = R \cdot I \qquad P = R \cdot I^{2}$$

En una habitación existe una base de enchufe de 16 amperios. Se quiere determinar la potencia máxima del aparato eléctrico que se puede conectar al enchufe, teniendo en cuenta que la tensión es de 230 voltios.

Que la base de enchufe sea de 16 amperios quiere decir que esta es la máxima intensidad que puede circular por él sin que se caliente excesivamente. Luego la potencia máxima que podrá suministrar será:

$$P = U \cdot I = 230 \cdot 16 = 3.680 \text{ W}$$

Calcula la potencia que consume un horno eléctrico si se conecta a una tensión de 230 V y su resistencia es de 50 Ω .

Primero calculamos la intensidad, aplicando la ley de Ohm:

$$I = \frac{U}{R} = \frac{230}{50} = 4.6 \text{ A}$$

 $P = U \cdot I = ... = 1.058 \text{ W}$

La potencia de una cocina eléctrica es de 3,5 kW. Se quiere saber si será suficiente con una base de enchufe de 25 A para conectarla a una red de 230 V.

 $P = U \cdot I$; despejando: $I = \frac{P}{U} = \frac{3.500 \text{ W}}{230 \text{ V}} = 15,2 \text{ A}$ Como la base de enchufe soporta hasta 25 A, está claro

que es suficiente para conectar la cocina.

La placa de características de una plancha eléctrica indica que su potencia es de 500 W y su corriente nominal de 4 A. Calcula el valor de la resistencia de caldeo.

Primero calculamos el valor de la tensión:

$$P = U \cdot I$$
; despejando: $U = \frac{P}{I} = \dots = 125 \text{ V}$

Para calcular la resistencia nos valemos de la ley de Ohm:

$$I = \frac{U}{R}$$
; despejando: $R = \frac{U}{I} = \frac{125}{A} = 31,25 \Omega$

Este problema también se podía haber resuelto determinando primero una fórmula que relacione *P*, *I* y *R*:

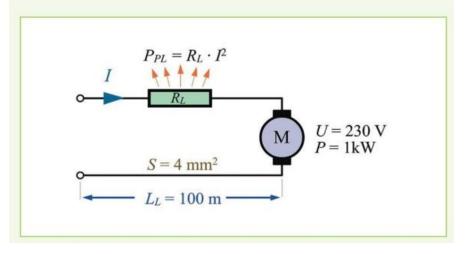
$$P = U \cdot I \qquad P = R \cdot I \cdot I$$

$$U = R \cdot I \qquad P = R \cdot I^{2}$$

Se dispone de una resistencia calefactora para un horno eléctrico de la que solo se conoce su potencia de trabajo, 700 W, y el valor óhmico de la misma, 75,6 Ω. ¿A qué tensión se podrá conectar el horno para que funcione correctamente?

$$P = U \cdot I$$

$$P = U \frac{U}{R} = \frac{U^2}{R}$$


$$P = \frac{U^2}{R}$$

$$P = \frac{U^2}{R}$$
Despeiando: $U = \sqrt{P \cdot R} = \sqrt{700 \cdot 75.6} = 230 \text{ V}$

Despejando: $U = \sqrt{P \cdot R} = \sqrt{700 \cdot 75,6} = 230 \text{ V}$

¿Cuál será la pérdida de potencia que se producirá en los conductores de una línea eléctrica de cobre de 4 mm² de sección y de 100 m de longitud, que alimenta un motor eléctrico de 1 kW a 230 V?

La potencia que se pierde en los conductores se puede calcular mediante la expresión $P_{PL} = R_L \cdot I^2$, siendo R_L la resistencia de los conductores de la línea e I la intensidad que circula por ellos.

$$I = \frac{P}{U} = \frac{1.000}{230} = 4,35 \text{ A}$$

$$R_L = \rho \cdot \frac{L}{S} = 0,01786 \cdot \frac{200}{4} = 0,89 \Omega$$

$$P_{PL} = R_L \cdot I^2 = 0,89 \cdot 4,35^2 = 16,84 \text{ W}$$

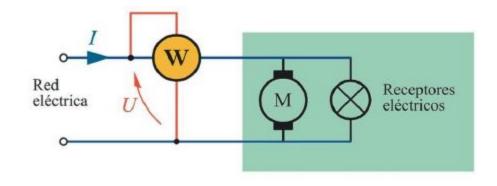
Nota: Se ha tomado 200 m de longitud de conductor, teniendo en cuenta que son 100 m de ida y 100 m de vuelta. La potencia que se pierde en el conductor se transforma en calor, que eleva su temperatura y puede llegar a perjudicarlo.

¿Cuál será el aumento de temperatura que experimenta una lámpara incandescente de 60 W/230 V con filamento de wolframio, si al medir su temperatura en frío obtuvimos un resultado de 358 Ω ?

Primero calculamos la resistencia aproximada en caliente con la ayuda de las características de la lámpara:

$$P = \frac{U^2}{R}$$
; despejando: $R = \frac{U^2}{R} = \dots = 881,7 \Omega$

$$\Delta t^{\circ} = \frac{\left(\frac{R_t}{R_0} - 1\right)}{\dots = 2.926 \, ^{\circ}\text{C}}$$


 $R_{t^{\circ}} = R_{0} \cdot (1 + \alpha \cdot \Delta t^{\circ})$; despejando:


Ejercicio	1	U	R	P
1.°	5 A	500 mV	?	?
2.°	20 A	?	5 Ω	?
3.°	30 mA	?	?	5 W
4.°	?	200 V	?	100 mW
5.°	?	10 kV	15 kΩ	?
6.°	?	?	600 mΩ	1 kW

2.- Medida de la Potencia Eléctrica

El aparato que mide la potencia eléctrica es el vatímetro.

En realidad, el vatímetro mide por separado la tensión y la intensidad de la corriente, para después realizar la operación $P = U \cdot I$

3.- Energía Eléctrica

De la expresión que relaciona la energía con la potencia se deduce que la energía es el producto de la potencia por el tiempo. El cálculo de la energía eléctrica consumida por un receptor es muy interesante, especialmente para los consumidores, ya que sobre él se establecen los costes que facturan las compañías eléctricas.

$$P = \frac{E}{t}$$
; despejando: $E = P \cdot t$

¿Cuál es la unidad de medida de la energía eléctrica? Todo dependerá de las unidades que se tomen de la potencia y del tiempo.

	$E = P \cdot t$					
P (W)	t (s)	P (kW)	t (h)			
$E = W \cdot s = Julios$		$E = kW \cdot h = kilovatios \cdot hora$				

El julio es la unidad perteneciente al Sistema Internacional. Como es muy pequeña, se suele utilizar más el kWh. Calcula la energía, en kWh y julios, consumidos por un calefactor de 500 W en 8 horas de funcionamiento.

$$E = P \cdot t = 0.5 \text{ kW} \cdot 8 \text{ h} = 4 \text{ kWh}$$

 $500 \text{ W} = 500/1.000 = 0.5 \text{ kW}$
 $E = P \cdot t = 500 \text{ W} \cdot 28.000 \text{ s} =$
 $= 14.400.000 \text{ julios}$

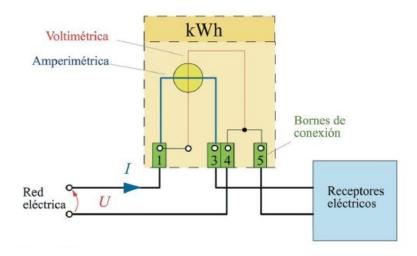
8 horas = $8 \cdot 3.600 = 28.800$ s

Se quiere determinar el gasto bimensual de un calefactor de 500 W, que funciona, por término medio, 4 horas al día. Precio del kWh: 0,09 €.

$$E = P \cdot t = 0.5 \text{ kW} \cdot 240 \text{ h} = 120 \text{ kWh}$$

 $t = 60 \text{ días} \cdot 4 \text{ h} = 240 \text{ h}$
Gasto = 120 kWh · 0.09 € = 10.8 €

¿Cuánto tiempo podremos tener conectado un televisor de


$$E = \frac{\text{Gasto}}{\text{precio kWh}} = \frac{1}{0,1} = 10 \text{ kWh}$$

$$E = P \cdot t, \text{ despejando } t = \frac{E}{P} = \frac{10}{0,1} = 100 \text{ horas}$$

3.- Medida de la Energía Eléctrica

El aparato que mide la energía eléctrica consumida es el contador y, como todos bien sabemos, es el que nos dice, a fin de cuentas, lo que debemos pagar a la compañía eléctrica.

El contador se conecta exactamente igual que un vatímetro, y nos da la lectura de la energía consumida, gracias a que integra el producto de la potencia por el tiempo

El contador de energía que más se ha estado utilizando hasta hace unos pocos años es el de inducción, que realiza la medida gracias a un sistema motorizado, que obliga a girar un disco. La velocidad de dicho disco depende del producto de la tensión por la intensidad, es decir de la potencia. Existe un sistema que cuenta el número de vueltas y presenta una lectura directa de los kWh consumidos.

El contador de energía digital ha sustituido prácticamente en su totalidad al de inducción y su funcionamiento es totalmente electrónico. Este equipo de medida envía por vía telemática la lectura del consumo a la distribuidora de energía a tiempo real, por lo que se evita el que un técnico tenga que desplazarse y realizar la lectura presencial. Este contador permite la contratación de tarifas, por parte del usuario, con discriminación horaria y la posibilidad de realizar un seguimiento del consumo diario a través de una aplicación móvil o un espacio web.

Funcionamiento del contador de energía digital

El **piloto de luz rojo** nos da información sobre el estado actual de funcionamiento:

- Apagado: no hay consumo de energía eléctrica.
- Parpadea de forma continua: sí hay consumo de energía eléctrica.
- Parpadea de forma rápida: el consumo de energía es muy alto.
- Luz roja fija: el contador se ha bloqueado al haberse superado la potencia eléctrica contratada y se interrumpe el suministro eléctrico. Este sistema hace las veces de Interceptor de Control de Potencia (ICP).

Para desbloquear el contador en el caso de haberse superado la potencia eléctrica contratada existen dos posibilidades:

- Desconectar el interruptor general de nuestro cuadro general de mando y protección situado en nuestra vivienda durante unos segundos, para volver a conectarlo y restablecer así el servicio de suministro de energía eléctrica.
- Pulsando el botón amarillo de menú situado en el panel frontal del contador.

El **pulsador de menú** nos da acceso a los diferentes menus de lectura. Si se mantiene pulsado el botón durante dos segundos, el *display* mostrará «Modo lectura» y entraremos en unos menús.

Con el pulsador de menú podremos acceder, entre otros parámetros, a las lecturas de consumo por discriminación horaria, como por ejemplo:

- 1.18.0: energía total consumida.
- 1.18.1: lectura de contador en horas punta.
- 1.18.2: lectura de contador en horas valle.
- 1.18.3: lectura de contador en horas supervalle.

Piloto de luz rojo

Pulsador de menú y navegación