

PARÁMETROS QUE DEFINEN **UN MOVIMIENTO**

- Espacio (e)
 - Posición
 - Trayectoria
 - Rectilínea
 - Curvilínea
- Tiempo (t)
- Velocidad (v)
 - Velocidad instantánea
 - Velocidad media
- Aceleración (a)

$$a = \frac{v}{t} \text{ (m/s}^2)$$

TIPOS DE MOVIMIENTOS

- Rectilineo (MR)
 - Uniforme (MRU)
 - Variado (MRUV)
 - Acelerado
 - Retardado
 - Caída libre
 - Ascendente
 - Descendente
- Circular uniforme (MCU)
 - Espacio lineal (arco): velocidad lineal (v)
 - Espacio angular (ángulo): velocidad angular (ω)

MOVIMIENTOS, FÓRMULAS, RELACIONES

- $t = \frac{e}{v}$ MRUV (+ acelerado, retardado)

$$v = a \cdot t$$

 $Si v_0 = 0 \quad v = a \cdot t \qquad t = \frac{v}{a}$ $a = \frac{v}{t}$

Si existe v_0 $v = v_0 \pm a \cdot t$

$$a = \frac{v - v_0}{t}$$

$$a = \frac{v - v_0}{t}$$

$$e = \frac{1}{2} a \cdot t^2 \quad (v_0 = 0)$$

$$e = v_0 \cdot t \pm \frac{1}{2} a \cdot t^2$$

$$v = \sqrt{2 \cdot a \cdot e}$$

Caída libre:

$$v = g \cdot t$$
; $v = v_o \pm g \cdot t$ $h = \frac{1}{2}g \cdot t^2$

$$h = v_o \cdot t \pm \frac{1}{2} g \cdot t^2$$

$$v = \frac{2 \cdot \pi \cdot r \cdot n}{60} \qquad \omega = \frac{2 \cdot \pi \cdot n}{60}$$

FUERZA (ESTÁTICA)

TIPOS DE FUERZAS

COMPOSICIÓN DE

FUERZAS (I)

Igual sentido

Sentido contrario

- Fuerza muscular
- Fuerza tensión
- Fuerza atracción Fuerza deformación
- Fuerza rozamiento

EFECTOS DE LAS FUERZAS

- Modificación del estado de reposo o movimiento
- Deformación o modificación
- Equilibrio
- Atracción o repulsión

COMPOSICIÓN DE FUERZAS (II)

Dos fuerzas: De la misma dirección:

Si F_1 y F_2 forman 90°:

COMPOSICIÓN DE FUERZAS (III)

ELEMENTOS DE UNA FUERZA

• Punto de aplicación

Dirección

Intensidad

Sentido

- · Fuerzas paralelas:
 - De igual sentido:

$$R = F_1 + F_2$$

De sentido contrario:

$$R = F_1 - F_2$$

$$F_1 \cdot a = F_2 \cdot b$$

PRINCIPIOS DE LA DINÁMICA

- 1. Principio de inercia
- 2. Principio fundamental de la dinámica

$$F = m \cdot \alpha$$
, $P = m \cdot g (g = 9.81 \text{ m/s}^2)$

3. Principio de acción y reacción

MOVIMIENTOS Y FUERZA (DINÁMICA)

Trabajo: $T = F \cdot e$ (julios)

Potencia: $W = \frac{T}{t} = \frac{F \cdot e}{t} = F \cdot v$

Energía: $E_c = \frac{1}{2} m \cdot v^2$ (cinética)

 $E_{\rm p} = m \cdot g \cdot h$ (potencial)