Boletín 15. Sistemas Lineales

1. Resuelve aplicando el método de Gauss

a)
$$y+z=-5$$

 $2x-y=0$
 $x+z=-4$
b) $-x-y+z+t=4$
 $3x-2y-t=-2$
 $x+2y-2z-t=0$
 $y+z-4t=-4$

2. Discute estos sistemas de ecuaciones lineales utilizando método Gauss

a)
$$x + 2y - 2z = 1$$

 $-x - y + z = 0$
 $y - z = 1$ b) $-2x + y - z = 1$
 $2x - 2y - z = 3$
 $-y - 2z = 7$

3. Discute y resuelve los sistemas:

4. Determina la expresión matricial del sistema y resuélvelo como si fuera una ecuación matricial

$$-3x + y + 2z = 0$$

 $-x - 2y + z = -2$
 $x - y + z = 1$

5. Utiliza el teorema de Rouché-Frobenius para determinar si estos sistemas son compatibles y resuelvelos mediante el método de Gauss.

a)
$$2x-3y+z=-2$$

 $-x-y+2z=0$
 $x-4y+3z=-2$
b) $x+3y-2z=1$
 $-2x-3y+z=0$
 $-x-z=7$

6. Discute este sistema aplicando el teorema de Rouché-Frobenius

$$\begin{array}{r}
 x + y - z + t = 1 \\
 -x - 3y + z - 2t = 0 \\
 -2y - t = 1 \\
 y - 2z = -3
 \end{array}$$

7. Evalúa si se puede aplicar la regla de Cramer a estos sistemas de ecuaciones

a)
$$x + y + z = -2$$

 $x - y + z = 4$
 $-2y + z = -3$
b) $x + 2y + z + t = 0$
 $x - 3y + z - 2t = -2$
 $-2y + 3t = 3$

8. Evalúa si se puede aplicar la regla de Cramer a este sistema. En caso afirmativo resuelve el sistema utilizando esta regla

$$\begin{aligned}
-x + 2y - z &= 2 \\
x - y + 2z &= 1 \\
-2x + z &= -1
\end{aligned}$$

9. Resuelve este sistema utilizando la regla de Cramer, si es posible

$$-2x + y - z + t = 4
 -x - 3y + z - 2t = -8
 -2y - t = -4
 y - 2z = -1$$

$$2x + y - 3z + 2t = 4
 -x - 3y + z - 2t = 0
 x - 2y - 2z = 4
 3x + 4y - 4z + 4t = 4$$

10. Resuelve estos sistemas de ecuaciones mediante la regla de Cramer

a)
$$3x + 2y - 3z = 0$$

 $x - y + 4z = 1$
 $2x + 3y - 7z = -1$
b) $x + y - z = 0$
 $x - y + z = 1$
 $2x + 4y - 4z = -1$

11. Discute estos sistemas en función de los valores de m y de a

$$-x + y - z = -1
 4x - 2y + 2z = 2m
 -3x - 2y + mz = -4
 -3x - 2y + mz = -4$$

12. Resuelve aplicando el método de Gauss

a)
$$2x + 3y + 5z = 1$$

 $4x + 7y + 13z = -1$
 $2x + 3y + 7z = -3$
b) $x + 2y + z = 1$
 $x + y - z = 1$
 $2x + 3y + z = 1$
e) $x - 2y - z = -1$
 $2x + 3y + z = 1$
e) $x - 2y - z = -1$
 $x + y - z = 1$
 $2x + 3y + z = 1$
f) $-p + 3q - r = 12$
 $x + y + z = 2$
f) $-p + 3q - r = 12$
 $x + y + z = 2$
f) $-p + 3q - r = 12$
 $3p + 2r = 7$
 $3p - 2r = 7$

13. Escribe en forma matricial, y luego resuelve empleando la matriz inversa

a)
$$4x - y = 18$$

 $3x + 2y = 8$ b) $x - z = -7$
 $2x + y - 3z = -26$
 $4y + 2z = 0$

14. Discute y resuelve los siguientes sistemas de ecuaciones lineales

a)
$$x + 2y + z = 3$$

 $x + y - 3z = 3$
 $2x + 3y + z = 3$
b) $x + y + 2z = 3$
 $2y + 3z = 2$
 $3x + y + 3z = 7$
c) $a + c = 0$
 $b - c = 1$
 $a + 3b + c = 5$
d) $5x + 4y + 2z = 0$
 $2x + 3y + z = 0$
 $4x - y + 4z = 1$
e) $a + c = 0$
 $b - c = 1$
 $a + 3b - 2c = 5$
g) $2x - 4y + z = 7$
 $-3x + 6y - 2z = 4$
 $11x - 22y + 6z = 24$
h) $2a - b + c = 7$
 $3a + 2b - 2c = 1$

Soluciones

1)

2)

- a) Sistema compatible indeterminado
- b) Sistema incompatible

3)

a)

• Si
$$\lambda=0 \rightarrow \begin{pmatrix} 1 & -1 & 0 & 2 \\ 0 & -3 & 1 & 2 \\ 0 & 0 & 0 & -1 \end{pmatrix} \rightarrow$$
 Sistema incompatible

• Si
$$\lambda \neq 0 \rightarrow \begin{pmatrix} 1 & -1 & \lambda & 2 \\ 0 & -3 & \lambda + 1 & 2 \\ 0 & 0 & -\lambda & -1 \end{pmatrix} \rightarrow$$
 Sistema compatible determinado

$$\begin{vmatrix} x - y + \lambda z - 2 \\ -3y + (\lambda + 1)z = 2 \\ -\lambda z = -1 \end{vmatrix} \rightarrow \begin{cases} x = \frac{1 + 2\lambda}{3\lambda} \\ y = \frac{1 - \lambda}{3\lambda} & \cos \lambda \in \mathbb{R} - \{0\} \\ z = \frac{1}{\lambda} \end{cases}$$

b)

• Si
$$\lambda \neq 1 \rightarrow \begin{pmatrix} 1 & -2 & 1 \\ 0 & 2 & -2 \\ 0 & 0 & 1-\lambda \end{pmatrix} \begin{vmatrix} -2 \\ 5 \\ 0 \end{vmatrix} \rightarrow \text{Sistema compatible} \rightarrow \begin{cases} x=3 \\ y=\frac{5}{2} \\ z=0 \end{cases}$$

• Si
$$\lambda = 1 \rightarrow \begin{pmatrix} 1 & -2 & 1 & | & -2 \\ 0 & 2 & -2 & | & 5 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \rightarrow$$
 Sistema compatible indeterminado

$$x - 2y + z = -2
2y - 2z = 5
0 = 0$$
 $\Rightarrow \begin{cases} x = 3 + a \\ y = \frac{5 + 2a}{2} \\ z = a \end{cases}$ $\cos a \in \mathbb{R}$

a)
$$x = 1$$
, $y = 1$, $z = 1$

a)Sistema compatible indeterminado

$$\begin{cases} x = \frac{-2 + 5\lambda}{5} \\ y = \frac{2 + 5\lambda}{5} & \cos \lambda \in \mathbb{R} \\ z = \lambda \end{cases}$$

- b) Sistema incompatible
- 6) Sistema compatible indeterminado

7)

a) Se puede aplicar Cramer porque número de incógnitas=número de ecuaciones y el determinante de la matriz asociada es distinto de cero

b) No se puede aplicar Cramer porque número de incógnitas es distinto al número de ecuaciones

8)
$$x = 1$$
, $y = 2$, $z = 1$

9)

a)
$$x = 0$$
, $y = -1/3$, $z = 1/3$, $t = 14/3$

b) sistema compatible indeterminado

$$x = \frac{12 + 8\lambda - 4\mu}{5}$$
, $y = \frac{-8 - \lambda + 2\mu}{5}$, $z = \lambda$, $t = \mu$ con λ , $\mu \in \mathbb{R}$

10)

a) Sistema compatible indeterminado

$$x = \frac{2-5\lambda}{5}$$
, $y = \frac{15\lambda - 3}{5}$, $z = \lambda \cos \lambda \in \mathbb{R}$

b) Sistema compatible indeterminado

$$x = \frac{1}{2}$$
, $y = \frac{2\lambda - 1}{2}$, $z = \lambda \cos \lambda \in \mathbb{R}$

11)

- a) Si m= 2: Sistema incompatible. Si m≠2: Sistema compatible determinado
- b) Si a= -9: Sistema compatible indeterminado. Si a≠-9: Sistema compatible determinado

a)
$$x = 1$$
, $y = 3$, $z = -2$

b)
$$x = -2$$
, $y = 2$, $z = -1$

c)
$$x = 1$$
, $y = 3$, $z = -2$

d)
$$x = 1$$
, $y = 2$, $z = -3$

e)
$$x = 1$$
, $y = 3/5$, $z = 4/5$

f) Sistema incompatible

g)

$$x = \frac{12 - 9\lambda}{5}$$

$$y = \frac{1 - 17\lambda}{5} \quad \text{con } \lambda \in \mathbb{R}$$

$$z = \lambda$$

h)
$$x = 123/23$$
, $y = 107/23$, $z=-21/23$

a)
$$x = 4$$
, $y = -2$

b)
$$x = 1$$
, $y = -4$, $z = 8$

a)
$$x = -4$$
, $y = 4$, $z = -1$

b)

La solución es:
$$x = \frac{4-\lambda}{2}$$
, $y = \frac{2-3\lambda}{2}$, $z = \lambda \cos \lambda \in \mathbb{R}$

c)
$$a = -2/3$$
, $b = 5/3$, $c = 2/3$

d)
$$x = -2/21$$
, $y = -1/21$, $z = 1/3$

e) Sistema incompatible

f

La solución es:
$$x=\frac{-1+\lambda-6\mu}{5}, \quad y=\frac{-2+2\lambda-7\mu}{5},$$
 $z=\lambda, \quad t=\mu \cot \lambda, \mu \in \mathbb{R}$

g)

La solución es:
$$x = 18 + 2\lambda$$
, $y = \lambda$, $z = -29 \operatorname{con} \lambda \in \mathbb{R}$

h)

La solución es:
$$a=\frac{15}{7}, \ b=\frac{7\lambda-19}{7}, \ c=\lambda \cos\lambda \in \mathbb{R}$$