Resumen Derivadas.

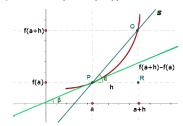
1. Derivada de una función en un punto x_0 , se denota por $f'(x_0)$, es el valor si existe y es finito de este límite:

$$\lim_{x \to x_0} \left(\frac{f(x) - f(x_0)}{x - x_0} \right)$$

Si en esta definición hacemos x=x₀+h, la fórmula es equivalente a:

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

<u>2. Interpretación geométrica de la derivada</u>, en un punto x_0 , $f'(x_0)$, es la pendiente de la recta tangente a la gráfica en el punto $P(x_0, f(x_0))$



- <u>3. Derivadas laterales.</u> Al estar definida como un límite, para asegurar su existencia debe comprobarse que existe límite por la izquierda, límite por la derecha y que ambos son iguales
- <u>4. Derivabilidad y continuidad.</u> Toda función derivable en un punto es necesariamente continua en dicho punto
- <u>5. Función derivada</u> de una función f(x) es una nueva función que asigna a cada punto el valor de la derivada de f(x) en dicho punto:

$$\mathbf{x} \longrightarrow \mathbb{R}$$

$$\mathbf{x} \longrightarrow \mathbf{f}'(\mathbf{x}) = \lim_{\mathbf{x} \to \mathbf{x}_0} \left(\frac{\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)}{\mathbf{x} - \mathbf{x}_0} \right)$$

<u>6. Derivadas sucesivas.</u> Si derivamos la función derivada f'(x), obtendermos otra función que llamamos derivada segunda de f y se denota por f''(x). Podemos repetir el proceso obteniendo sucesivamente la tercera derivada, la cuarta, etc...

7. Operaciones con derivadas.

Operación	Derivada
Suma de funciones	[f(x) + g(x)]' = f'(x) + g'(x)
Producto de un número por una función	[kf(x)]' = kf'(x)
Producto de funciones	$[f(x)\cdot g(x)]' = f'(x)\cdot g(x) + f(x)\cdot g'(x)$
Cociente de funciones	$\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{[g'(x)]^2}$
Regla de la cadena	$[(g \circ f)(x)]' = g'(f(x)) \cdot f'(x)$

8. Técnicas de derivación.

8.1 Derivación logarítmica. Se usa en funciones del tipo:

$$h(x) = f(x)^{g(x)}$$

Se resuelven aplicando ln a ambos lados, y a continuación derivando ambos lados 8.2 Derivada de una función implícita en un punto. Se usa en funciones expresadas en forma implícita, por ejemplo:

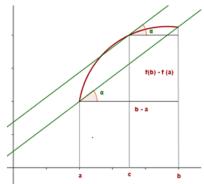
$$x^2+y^2-6x-6y=0$$

Se resuelven derivando toda la función respecto a x, a continuación se despeja la derivada y´, y por último se sustituye en esta expresion los valores del punto

9. Teorema del valor medio (Lagrange) Si una función es continua en [a,b] y derivable en (a,b) entonces existará al menos un punto c que pertenece al intervalo (a,b) que cumple

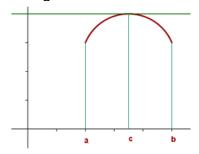
$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Interpretación geométrica del teorema del valor medio



<u>10. Teorema de Rolle.</u> Si una función f(x) es continua en [a,b] y derivable en (a,b) y se cumple que f(a) = f(b) se cumple entonces que existará al menos un punto c que pertenece al intervalo (a,b) que cumple que f'(c)=0

Interpretación geométrica del teorema de Rolle



11. Crecimiento y decrecimiento.

<u>11.1 Una función es **creciente**</u> en un punto $x=x_0$ si la derivada de la función en ese punto es positiva.

$$f'(x_0) > 0 \rightarrow f(x)$$
 es creciente en $x = x_0$

<u>11.2 Una función es **decreciente**</u> en un punto $x=x_0$ si la derivada de la función en ese punto es negativa.

$$f'(x_0) < 0 \rightarrow f(x)$$
 es creciente en $x = x_0$

12. Máximos y mínimos relativos

Si una función f(x) presenta un máximo o un mínimo en $x=x_0$, se cumple que $f'(x_0)=0$. Existen dos modos de averiguar si x_0 es máximo o mínimo:

Α	$f(x)$ creciente a la izquierda de x_0 y decreciente a la derecha $\rightarrow x_0$ es máximo			
	$f(x)$ decreciente a la izquierda de x_0 y creciente a la derecha $\rightarrow x_0$ es mínimo			
В	$f''(x_0) < 0 \rightarrow x_0$ es máximo			
	$f'(x_0) > 0 \rightarrow x_0$ es mínimo			

13. Concavidad y convexidad.

<u>13.1 Una función es **convexa**</u> en un punto $x=x_0$ si la derivada segunda de la función en ese punto es positiva.

$$f''(x_0)>0 \rightarrow f(x)$$
 es convexa en $x=x_0$

<u>13.2 Una función es **cóncava**</u> en un punto $x=x_0$ si la derivada de la función en ese punto es negativa.

$$f''(x_0) < 0 \rightarrow f(x)$$
 es concava en $x = x_0$

14. Puntos de inflexión

Una función presenta un punto de inflexión en x_0 si en ese punto dicha función pasa de ser cóncava o convexa, o viceversa.

Si una función f(x) presenta un punto de inflexión en $x=x_0$, se cumple que $f''(x_0)=0$. Existen dos modos de averiguar si x_0 es punto de inflexión:

	J •
Α	$f''(x)>0$ a la izquierda de x_0 y $f''(x)<0$ a la derecha $\to x_0$ es punto de inflexión
	f''(x)<0 a la izquierda de x_0 y f''(x)>0 a la derecha $\rightarrow x_0$ es punto de inflexión
В	$f'''(x_0) < 0 \rightarrow x_0$ es punto de inflexión

Derivadas de funciones elementales.

Función	Derivada	Función	Derivada
f(x) = c	f'(x) = 0		
f(x) = x	f'(x) = 1		
$f(x) = x^n$	$f'(x) = n \cdot x^{n-1}$	$f(x) = [g(x)]^n$	$f'(x) = n \cdot [g(x)]^{n-1} \cdot g'(x)$
$f(x) = \sqrt[n]{x}$	$f'(x) = \frac{1}{n^n \sqrt{x^{n+1}}}$	$f(x) = \sqrt[n]{g(x)}$	$f'(x) = \frac{g'(x)}{n^n \sqrt{g(x)^{n-1}}}$
$f(x) = a^x$	$f'(x) = \ln(a) \cdot a^x$	$f(x) = a^{g(x)}$	$f'(x) = \ln(a) \cdot a^{g(x)} \cdot g'(x)$
$f(x) = e^x$	$f'(x) = e^x$	$f(x) = e^{g(x)}$	$f'(x) = e^{g(x)} \cdot g'(x)$
$f(x) = \log_a(x)$	$f'(x) = \frac{1}{x \cdot \ln(a)}$	$f(x) = \log_a(g(x))$	$f'(x) = \frac{g'(x)}{g(x) \cdot \ln(a)}$
f(x) = In(x)	$f'(x) = \frac{1}{x}$	$f(x) = \ln(g(x))$	$f'(x) = \frac{g'(x)}{g(x)}$
f(x) = sen(x)	f'(x) = cos(x)	f(x) = sen(g(x))	$f'(x) = cos(g(x)) \cdot g'(x)$
f(x) = cos(x)	f'(x) = -sen(x)	$f(x) = \cos(g(x))$	$f'(x) = -sen(g(x)) \cdot g'(x)$
f(x) = tg(x)	$f'(x) = \frac{1}{\cos^2(x)}$	f(x) = tg(g(x))	$f'(x) = \frac{g'(x)}{\cos^2(g(x))}$
f(x) = arc sen(x)	$f'(x) = \frac{1}{\sqrt{1-x^2}}$	f(x) = arc sen(g(x))	$f'(x) = \frac{g'(x)}{\sqrt{1 - g^2(x)}}$
f(x) = arc cos (x)	$f'(x) = \frac{-1}{\sqrt{1-x^2}}$	f(x) = arc cos (g(x))	$f'(x) = \frac{-g'(x)}{\sqrt{1 - g^2(x)}}$
f(x) = arc tg(x)	$f'(x) = \frac{1}{1+x^2}$	f(x) = arc sen(g(x))	$f'(x) = \frac{g'(x)}{1 + g^2(x)}$