SOLUCIÓN DIODOS 9

GENIAL!!!!!

Enhorabuena chicos, lo habéis hecho todos bien Os describo ahora la explicación del circuito

Tenemos dos diodos conectados en paralelo pero contrapuestos entre sí. Por lo tanto los dos diodos no pueden estar en conducción al mismo tiempo.

El D_1 tiene en su ánodo una tensión de 20V menos lo que pueda caer en la R y en su cátodo una tensión de 4V. Es claro que este diodo pueda estar en conducción. Pero para asegurar tenemos que ver que pasa con D_2

 D_2 en el ánodo tiene 4V y en el cátodo casi los 20V, (E_1 - V_R), es decir tiene mayor tensión en el cátodo que en el ánodo. Claramente está PI o lo que es lo mismo en corte.

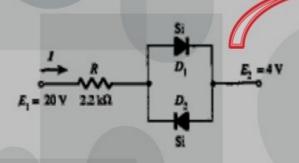
Ahora como ya sabemos que D_2 está en corte lo consideramos como un interruptor abierto por el que no circula corriente desapareciendo la rama del paralelo donde estaba el D_2 .

Nos queda una malla muy sencilla formada por dos fuentes de continua una de 20V y la otra de 4V, una R de $2.2K\Omega$ y una pequeña tensión de 0.7V correspondiente al diodo en conducción.

El sentido de intensidad de corriente está marcado por la polaridad de la pila de mayor valor y la colocación del diodo polarizado en directa. Por lo que el sentido de I es el indicado en la figura. Recordad lo visto en mallas de electrotecnia.

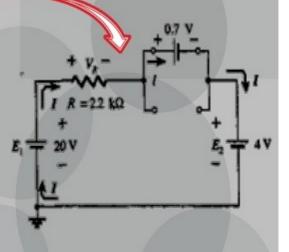
Y, ¿ qué valor tendrá la intensidad ?. Pues no hay más que aplicar:

$$\Sigma V = I_*R$$


$$E_1 - V_D - E_2 = I_*R$$

$$20 - 0.7 - 4 = I_*2.2K$$

$$I = 15.3/2.2K = 6.95mA$$


Ejemplo 2

Determinar la corriente I para red mostrada.

Aplicando la LVK, se obtiene I:

I = 6.95 mA

