INSTALACIONES SOLARES FOTOVOLTAICAS

PROYECTO FIN DE CURSO

Los proyectos me los enviais al correo <u>lconde@edu.xunta.gal</u> (porque en el aula virtual no hay espacio para tanta carga)

FASES DEL PROYECTO:

1. DESCRIPCIÓN:

- Tipo de instalación (obligatorio que la instalación sea autónoma)
- Ubicación: cooedenadas terrestres (latitud y longitud)
- Orientación : Sur y ándulo de azimut 0°
- Ángulo de inclinación que le vais a dar al generador FV
- Utilización: anual o estacional

2. INVENTARIO DE CONSUMOS:

Estimar la energía eléctrica media absorbida por el sistema

- Si el factor de potencia es distinto de la unidad hay que trabajar con la potencia aparente.
- En frigoríficos, congeladores (aparatos con control automático) el fabricante proporciona (casi siempre) el consumo de energía anual

Cubrimos una tabla tipo:

Receptor	Tensión (V)	Cantidad	Potencia (W) (VA)	Uso diario (horas)	Energía diaria (Wh)
Lámpara fluorescente	230 ca	1	36	3	108

Recordad que si el FP es distinto de uno el dato en Potencia corresponde con la potencia aparente

3. TIPO DE SISTEMA:

Con acumulación

Tensión Nominal según:

POTENCIA	TENSIÓN NOMINAL
P < 800 w	12 V
800 < P < 1600 W	24 V
1600 < P < 3200 W	48 V
P > 3200 W	120 o 300 V

4. DIMENSIONADO DEL GENERADOR:

Tenemos que llegar a determinar la potencia mínima del generador:

$$P_{gmin} = W_d * G_{CEM} / G_{dm} (\alpha, \beta) * PR$$

Para ello hay que tener en cuenta:

- Período de diseño:
 - a) Consumo cte a lo largo del año: mes más desfavorable diciembre
 - b) Consumo estacional: mes más desfavorable julio
 - c) Instalaciones de bombeo: julio
- De la tabla de irradiación global diaria sobre superficie horizontal $G_{dm}(0)$ en Kwh/ (m².día) (tabla 1,3 del tema 5) obtenemos el valor de irradiación global (y reservamos el dato)
- Calculamos el valor medio de irradiación diaria sobre superficie inclinada un ángulo β y orientada un ángulo α G_{dm} (α , β):

$$G_{dm}(\alpha,\beta) = G_{dm}(0) * K* FI*FS$$

Siendo:

K: la relación entre el valor medio mensual de la irradiación diaria sobre plano horizontal, $G_{\text{dm}}(0)$, y el mismo valor para un plano inclinado el ángulo óptimo.

FI: el factor de irradiancia (factor de corrección) por si no es posible inclinar el generador el ángulo óptimo:

$$\begin{split} FI = 1 \text{ - (} 1.2*10^{\text{-4}}(\ \beta - \beta_{opt}\) + 3.5 \ *10^{\text{-5}}\ \alpha^2\) \ si\ 15^{\text{o}} < \beta < 90^{\text{o}} \\ FI = 1 \text{ - (} 1.2*10^{\text{-4}}(\ \beta - \beta_{opt}\) \ si\ \beta < 15^{\text{o}} \end{split}$$

FS: factor de sombreado. En ausencia de sombras vale 1

La experiencia nos dice que podemos considerar:

Mes	K	$eta_{ m opt}$	
diciembre	1,7 Latitud + 10		
julio	1	Latitud - 20	
anual	1,15	Latitud - 10	

Recordad que:

 W_{d} es el consumo de energía diario en Wh y que G_{CEM} es la irradiancia en condiciones CEM y que vale $1000W/m^2$

(Me olvidé) El PR es el rendimiento energético que en términos generales podemos considerar:

PR = 0.7 para sistemas con invensor

PR = 0,6 para sistemas con regulador e inversor de carga

PR = 0.7 para batería y regulador

Con todos estos datos ya tenemos el valor de la potencia mínima del generador

$$P_{Gmin} = W_d * G_{CEM} / G_{dm} (\alpha, \beta) * PR$$

La máxima potencia del generador no debe sobrepasar el 20% del valor de $P_{\text{gmin}}\,$ para no sobredimensionar el generador:

$$P_{\text{Gmin}} \! < \! P_{\text{G}} \! < 1,\! 2 \ P_{\text{Gmin}}$$

La potencia del Generador FV (P_G) estará entre esos dos límites.

De los datos técnicos de módulos FV comerciales elegimos el que más nos convenga (fijándonos en la potencia máxima y la tensión nominal) y se determinan cuantos necesitamos acoplar en paralelo y en serie (aplicación de las Leyes de Kirchhoff).

A partir del nº de módulos conectados determinamos las características de nuestro generador:

V_{Goc}: tensión en circuito abierto

 I_{Gsc} : intensidad en condiciones de cortocircuito

 V_{gmpp} : tensión de pico a pico I_{gmpp} intensidad de pico a pico

Creo que teneis trabajo suficiente hasta la próxima sesión que será el lunes 23 de marzo