EXERCICIOS REPASO REACCIONES QUÍMICAS

1. Ajusta las siguientes reacciones:

a)
$$CH_4 + O_2 \rightarrow CO_2 + H_2O$$

b)
$$KCIO_3 \rightarrow KCI + O_2$$

c)
$$H_2SO_4 + Ca(OH)_2 \rightarrow CaSO_4 + H_2O$$

d) PbO + NH₃
$$\rightarrow$$
 Pb + N₂ + H₂O

e)
$$C_2H_6O_2 + O_2 \rightarrow CO_2 + H_2O$$

- 2. Tenemos en un recipiente 100 g de Al₂(SO₄)₃, calcula:
- a) Masa molecular de la sustancia.
- b) Número de moles y de moléculas
- c) Átomos de Al, S, O y átomos totales.

(Sol. a) 342 g/mol; b) 0.29 mol; $1.75.10^{23}$ moléc.c) $3.50.10^{23}$ át Al; $5.25.10^{23}$ át de S; $2.10.10^{24}$ át de O; $2.98.10^{24}$ át totales)

- 3. Calcula el número de moles, moléculas y átomos de hidrógeno que hay en 30 mL de metanol (CH₃OH), su densidad es 0,79 g/mL. (Sol 0,74 mol; $4,46.10^{23} \text{ moléc.}$ y $1,78.10^{24} \text{ át de H}$)
- 4. Calcular la masa, moles, moléculas y átomos que hay en 50 L de O₂ medidos en condiciones normales. (71,42 gramos, 2,23 mol; 1,34.10²⁴ moléc; 2,68.10²⁴ át de H)

UN MOL DE CUALQUIER GAS EN CONDICIONES NORMALES OCUPA SIEMPRE UN VOLUMEN DE 22,4 I

- 5. El metano (CH₄) reacciona con el oxígeno (O₂) para formar dióxido de carbono (CO₂) y agua (H₂O).
- a) Calcula los gramos de dióxido de carbono y de agua que se obtendrán si partimos de 30 g de metano. (Sol 85,5 g de CO₂; 67,5 g de H₂O)
- b) Si el dióxido de carbono es un gas y estamos en condiciones normales, ¿qué volumen ocupará? (Sol 42 L)
- 6. El amoníaco (NH₃) se obtiene haciendo reaccionar nitrógeno con hidrógeno, si todas las sustancias se encuentran en estado gaseoso y las condiciones de presión e de temperatura no varían, cuántos litros de nitrógeno e hidrógeno son precisos para obtener 100 L de amoníaco. (Sol 50 L de N₂; 150 L de H₂)
- 7. Dada la siguiente reacción:

$$C_2H_6O_2(I) + O_2(g) \rightarrow CO_2(g) + H_2O(I)$$

Si obtenemos 25 L de CO_2 medidos a 1 atm e $0^{\circ}C$, ¿cuál es el volumen de los reactivos de los que partimos? Las condiciones de presión y temperatura se mantienen constantes.(densidad del $C_2H_6O_2$ 0,80 g/mL). (1 atm e $0^{\circ}C$ estas son las condiciones normales)

(Sol 37,5 L CO₂; 32,2 mL C₂H₆O₂)