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FUNCIONES, LIMITES Y CONTINUIDAD

Funcion real de variable real. Dominio y recorrido.
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Ejercicio: En un aparcamiento se cobra un fijo de 2 €y, a partir de la 12 hora, 50 céntimos por cada media hora de
uso. Calcula la funcién que describe el coste en funcion del tiempo.

2€ = 200 dijo Nodepude ded tiwnpo , t Chorss)
200 + 50 -2 (£ —4)= 200 + 400 (£ -1) pasadas .t Chort) S 2+ 4-(t-1) €

200 ¢ si t<1h { 2€ si t<1h
%(ﬂi ioo+ Aot e st >A4h 2+(t-Ne si t>4h sdt=3,neN
3@ € 13’
. o4

: | Lo 4]z

2 | L z| 3

ra T 2[4

4 -

o‘:s ,;4,'5 izz,ls =3 ‘t(l\)
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@ Composicion de funciones
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Sucesiones de numeros reales
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M Sequences - Sucesiones
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Limite de una sucesion
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Operaciones basicas con limites
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Calculo de limites con indeterminaciones
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LIMITES E INDETERMINACIONES (IND)

Limite de una funcién

. ] Existe el limite si los limites laterales . .
lim f (x) = b,(Si a,b € R) | (por Ia izquierda y por la derecha de lim f (x) = 11m+f (x)
T X = a) son iguales: T T
Limites en el infinito y limites lim f(x) y lim f(x) limf(x)=+0c0 y limf(x)=—-o0
infinitos X—+00 X—>—00 x—a X—a
Propiedades de los limites
Sea )lcl_r)r;f ) =p Sea E};g ) =¢ Entonces se cumple que:
i _ i , _ .. . f) _p ,
im[f(x)+gX®]=p+g im[f(x)-g@]=p-q lim ==, (Sig#0)
x—=a x—=a x—a g (x)
im[f)-g@l=p—q |limk-fW=k-p , Sik€R) lim|f (x)]g‘” =p? , (SipleR)
x—a X—a X—a
Indeterminaciones
k . P k Se estudian los limites laterales,
Indeterminaciéon — = co L =lim =—=00, k #0 | evaluando puntos préximos al punto a por
0 x—a Q (x) 0 su izquierda y por su derecha.
00 . P Se resuelve dividiendo por la potencia de
Indeterminacion — L = lim , Py Q polinomios mayor grado. Estudio de casos segun el
o x—o0 O (x gradode Py Q :
Gradode P > GradodeQ = L =* o0 . y 2x3 —x
El signo del co depende del signo de los coeficientes de grado mayor. Ejemplo: XEEO —5¢2_1 0
o 2x%r—x
Gradode P < GradodeQ = L =0 Ejemplo: lim ————— =0
X—00 5)63 -1
a
Gradode P = GradodeQ = L =— =23 —x =2
b Ejemplo: lim 3 =
siendo a y b los coeficientes de grado mayor de Py QO respectivamente. x—o0 Sx7—1 5
0 . P Se resuelve factorizando los polinomios. El
Indeterminacion — L =1lim , Py O polinomios factor (x — a) es el comdn y se podra
0 x—a O (x simplificar. A continuacién se recalcula.
0 . P -
Indeterminacién — L = 1lim () , Py O con radicales Se resgelve multlpllcanQO numeradory
x—a Q (x) denominador por el conjugado del radical.
Indeterminacién oo — oo Aparece en sumas o diferencias de Se resuelve multiplicando numerador y
fracciones o radicales. denominador por el conjugado del radical.
, L 1\"
Indeterminacién 1% Sfa resuelve a partir de la definicion del e = lim (1 + _)
namero e: Y00 X
- g(x) . L L . .
Si lim [f (x)] = 1* entonces el limite es = e~ siendo: L =1lim (f (x) — 1) -8 (x)
X—=a X—a

1de?2
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k
Indeterminacion 6 = 00 : Se estudian los limites laterales, evaluando puntos proximos.
. 2 2 . e s . 7 . . .
lim 1 = 6 = 00 con signo IND = Evaluo el limite con puntos proximos a 1 por la izquierda y por la derecha.
x—1 X —
Escojo, por ejemplo, 0,9 por la izquierda y 1,1 por la derecha, es decir, lim =—o0y lim =4 00
—1"x—=1 =1t x—1
ra w - - - -
Indeterminacion — : Se resuelve dividiendo por la potencia de mayor grado.
o0
2 x , 1 51 _ ,
3 _ 3 T3 Y - (signo de la razbn entre
lim M = had IND = lim —=~—* — {im X = 0 =— 2 = — 00 los coeficientes de grado
x>0 —5x2 —1 (&) X—00 —5x2 1 X—00 _2 _ i _i _ L 0 mayor)
x3 x3 x  x3 ©
-2x? X -2 1 2 1
—2x% — 3 3 ¥ 2 e o~ O
im—— 2 - P Np= fim X g X X ® © T
X—00 5X3—1 o0 X—00 5X3 1 X— 00 S—L S—L 5
-2x3  x 1 1
3 -— —2-—  —2——
. —2x7—x . X3 x3 . x2 00 - .
lim ———— = — IND = lim ——=— = lim = = —— (division de coeficientes de mayor grado)
X—00 5.x3 - 1 0 X—>00 5x3 1 X—00 S_L S_L
x3 x3 x3 o0
.0 : _— o -
Indeterminacion 6 : Se resuelve factorizando los polinomios. El factor (x — a) es el comun, siendo a el limite.
?+x-2 0 , , _ S k=-DEx+2 . x+2 3
lim ———— = — IND = x = 1 es raiz com(n. Factorizando: lim = lim =—=-1
x—=1 x2=5x+4 0 x—1 (x—l)(x—4) —1x—4 -3

Nota: Si hubiera radicales, se resuelve multiplicando el numerador y el denominador por el conjugado del radical.

Indeterminacion oo — oo : Se resuelve multiplicando el numerador y el denominador por el conjugado del radical.

lim x2—2 —x = 0o — oo IND . El numerador se resuelve como una diferencia de cuadrados.

X—>+00
2 2
. ( X —2—x> (\/x —2+x> ‘ w20 _ 2 . ) 2
lim Ilm —= lim —=—=0

xhoo V=2 +x St/ 2 2 4x ity 2_24x @ ®

Indeterminacién 1% : lim [f (x)] 80 _ el siendo L = lim [(f (x) — 1) g (x)]

3x+1
1 X o0 L _: . X . —9X - 3
lim = 1*IND = e~ siendo L = lim < )—1 -Bx+1)=1lm—=-9
x—oo \X +3 X—00 x+3

x—»oo X +3

3x+1
X i 1
=7 = —

S .
Resolvimos el limite anterior como una indeterminacién — . Finalmente: lim (
0 X—00

x+3

2de2
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Asintotas

Nsitota verticd © & € R La etz Vertical X =& o wmn ahintsto vertical do I fnsian L&) i

’g,g_)qa {l(x‘):ioo = |X=a& ’g;_)u&_ k() = —eo g;_)u% b\ =— oo, ’92;_1);\% kO =+ oo | ’g;_)ugcr LN = +eo

Buscamos s ceroc (raicer) del denswnadsr. Si no i era cews |, Mo habra asuditas verticoly .

Nstnlto hontotd © b€ M. La rec honzontd \/5;‘0 o wan ainTsto honioilkd do Lo fmcion £60) S0

b for=b = [g=b] i deosh, Lydeash S Ju for= oo, mo by

Nsinbota oblioum © La recta mo hinzonta W=mtn mE 0 5 ME 0 ima aikhtn obkiona de 1

famaon 00 s x‘l;v:w [fov-tmumy 129 = L O = U X

. (%) . mx Al
Aividios - gor~ X >g5h£oa )}YTZ%M*_/:@ 74—@){/ = M Sim =000 m=0 )""k‘“\?’f

Para col olav log Paw(mé(mg m = Diu F(_‘Q

X-> + 00

n= b [foo-mx]|= | 9 =mx+n

€da,u~PQoi Q6(>q: )::_—ZL i Vamss o ver ¢ tewe ween Asitita obliowac

o= L ‘C&—Q*‘”\ ESHE PV x =4Comm#o'{f/mqﬁw,hmo'“&«éfi

X3*es A —X—?'\‘W (X+Z\X_ X =3+ oo W+ Ly

z
. ) L (Xz o\ — L L= w(x+2) _
M:xQ—:“:m LEto-my] TXA Y \R¥ 2 I X res R+

= lan W2X L —2%

Xaves TR TXATR w4

:—-ZT: - L\MUF)QI\ actntota o\anAM@: \?Y Zwmktnz= X—1

Asiatota honzantad :

2

Bim X _ :
2 => o0 ><+2"O° s chga ho Jaew;_

Asitita verticad @ €l donovinade
ce anda awmamdio X+2=0 > X=—2 .

Rf;ﬂ _ i—z = — 0 , //6)
% ¢ % 22 La asw\tvt;\ vw*‘\cmx o x==Z N o
Vi LA + oo A

x=>-z¥ %+ |

Nola.: Sabemos que vna funcidn tiene asilitos verticales si tiene cens (fafces) en e dewowsinadar.
Tieme una astulite horizontadl si 6Q 8MOQ° AL numerador €S CM P m%rior A QA devowinador .
Tiewe una asfujvob\ oblena. si e& 8raoQo e numerador eg Qxac’cawa/j—&, Uno MAdl (iwe @/Q demominadeor .




édO—MPQ‘Oi 9= *ﬁ% , Estidia e downinio % lay asontotas

xt-4z0 = %Xf=14 > X=14

—0,a4 04 4,1

/
NN\ /
D=IR-%-4,13 -1 1
L‘\.(U\ ZJ = + o0 (A,U/\ A - - o 2
X =47 X0 x - X
L& 4 = - . A - 1
sﬁu—/\«* X% -4 = xlj“;‘“ %2 - 4 Tee
y=20
i 7
I
S R e i
X=>too x2-{ °© = y=o0 €s una asintoln horizakad ]
SN PV 1. R P

1 N ) |
x>+ X X =+ o0 (,@_—,1).)( =0  No I’Wg asinbola. obliona. .




Continuidad

Uma {umoion ‘8 8 cotimr en & puas X=a Si 34_)‘4& -FOQ: -FUQ

Se cumple que
3 B b0 D e 300 = b 400 Loty Uterdles iguales
3§ il Y fumoidh en el puids
Lue §0 = §a) €L W es i ol valor de fn fmcics en & puils

P& X

Tipos de discontinuidad

Karl Theodor Wilhelm
Weierstral3
I\ Y
yl 53
x1 3
Discontinuidad de salto finito Discontinuidad de salto infinito
lim f(z)# lim f(x) # too lim f(z) o lim f(z) son + oo
r—a~ rx—at T—a” r—a*
Y Y
| ‘ ol y =9(x)
]
21 : !
i | Bt 146 T
! 1
1 i :
| ]
| t
! O 1 X
/ O 1 X Funcion continua

Discontinuidad evitable

lim f (z) # f (a) finito lim f (z) = f (a)
0 bien ﬂf (a)



Limites en funciones definidas en trozos o intervalos

€ ) wplo | .
o x wi T represedlacdd,
oy st X< A4 (=e0,47 9/{‘6 946 Dweod
0= 0 b s dexsl | (44]
Dow\Mo D XY2=0D X=-2 € (_00)4] x
T+ 2
x-U4=0 X=-y & (4,00)

I7=R-{-27 , x=4 notime poblema y==

Estndiamas os Po\m‘tos c ticos v NS ‘ T

pules e -de?ero\ (wdre Lo iudecvalog) . . |

€ vj?e €aso, Q»S Ws de 1G'uvxs’ro\ S
x=A4 e X =1.
Cbndiamos Ve Under Ldordey o Todes Oog Pm‘(,‘os adiws (ndwimos Lap Qnm'ﬁmb wlhe wlervales ) .

Funcién definida en trozos o intervalos

fg—ﬁ- (e x§4- x+z - I;U\ 4 b £00) &W\.L‘ toa= ESW\.L— IXIL = + oo
WA .
L k() = Qia (—X+3\‘ 4 o D + fea= Qan 2 - } ﬁg“_?ﬁz'F(X)
x- ¢+ x>+ h -t X+Z
Discactinuidad do el Kvm}kv Discoctinuidad do ekl m&m’%

bow k0= lo (xrs)= -g=g = {(4) } A b £

A 4 _ 4 : o (.
b k0= by Ap= fyadci Discokinuided de sl infiws
Asindston o o
. \’
&W_n\f(ﬂ = 2;“*_* ;X;z = %:4, &w+f<x\- Q"“’tn o =t
Asfl&lSJCo\ L\av’\-zmw Pb:/l -‘\S\/V\'Rto\ ver licd e, X=UL .
. X _

:XL:‘T_” (x+2)x=o .ﬂ Na lrma oufu‘owh )&:-P(x‘)—&——q_ 0
)g:?w\_L_ ‘FC\Q: )g:‘iW\—f ;(é—L = 4+ oo S 'P\SLll\.t)'Ea L\mem"w\ Pa:O
R e G ™
Asinboton verbied on. x=—2. ﬂ No Lm?f oblioma




2% st X< | 2% 0 Xt4 e preseatacion
Epmplo LOO= { VRO == )
X+4 st X >4 1 "

No 1’\“”()’ PM‘\}S cv(Jc,\'oos) pore st va\tg d= J;mtﬁ'-"ki X =4

9"""\_%@\ = 9’:‘»\_ IX = 2

! x4 €0 ke vy vde 2.
}5}%%@\ =X9g»z+(x+4\ = A+4 = 2

La fumudn en x=4 vde LUy =0 £ Uy §60 =2 luep K00 Tiue vma
discont iwdod enkalle e X=4.

éd@mp% DaDQa QC\ {.‘umat;\ Cquﬁ Se W &n Q;\ ?MQ\’CA 5 CAQCMQf\ QA)S SLW QLMTYQSZ

B2 L B0 fn P s fo M
EK’« No ‘MWB/ asivt ola
L ) = 400 No heug astila 5 T
R = oo C3
<&\ — _ ailhhjl‘
Law £y =0 %= Wm@ 2 Asfnlit borizonkal
b 1+ e -0
QAU\/\ _%(54\ A | b(( A
= -4 e 2 5 10 v X
=l = o =0 1
w400 F 40 .
) = ‘
5{%4+P D= (-00/_4]&)[4/—}-oo>
L Dy g T = [4,0) U T4, +e0)

édo.mpﬁoi Sear £ U fumcicn Gy gofia e Ro sifuiesls :

Y
1 a) Glada & dowimo

H b) s Guids vake $(0) ¢

f — ~ \g o <) Coleda Uss S"W‘\Eﬂ Vuiles & indica Qo astntatas .
3 1 13 >>< Qu [0y > o, ) > Bwn [0) 5 Qs )

X=2>-o0 X=>-3 X=3 X—> 20

A) Ghdia WU crdinidod de Qo funcidn .




6{) Dowiunio :

D= M-{3}

b) Floy=2
C) LL/IMAIEZ) ‘3 aswbtay .

i YO0 = 3

A= =37 Discotinnidad
o YO = 2N L sk fwd
%= -3t

§(=3y=23

}g“@s— YO =+ Dwo@mM e
lw YO = oo ) sdl bk
X3

X = 3 2) o\s(\,\%ojtf\ \/t\rhcalz
X&M—foo%/(XBZ + 0

Sy )= -

Cpmple’ Dado & funcin f00= |

Aedn s siguedles Uiles: B [60) 5

Dowinio -

Dowiwnmo ! D=R

liw L0 = L (-x+z):-&}
X= 0" X=7 0~

w L0 = lun xrz = V2

x= ot X0

Y/\ Asfv{to'b\ Ve\rfica»\

Asihtota e =3
oblicne H
(Qa propi& ] 1| : |'|
Y'ectﬁ\y T || : l'l.
NIATE T
—4—l?—+—d¢e"::',f::\:>
Babon s 3 o 3 X

A) Grtinuidad 1
Tawbith son discolinaidader oo
sdls fiwk Oss pudes =% o -5
Se. comprueba am los lwalay Ul ralles
lwego + € = R - {—1-‘—5,—3)3}

Disca«{imyaup
- X+ s x<o de satte fick
VX+Z St xzo =X+2 VXt2
L =0 \Z
Quun Quun +22
X= -((X) ’ X=0 4(00 >>i >_/O
=2

+ VX“'Z =2 X+220 2> X2z -2 5 Cowg &M%‘t@ WTEVVJ& X>/0 no Lma« Pwu/eww~

$ lim [ Dig continmided do sty .(umt

X=7 0

L J;uw\at& 1[(0) = \Fi No es cmjtimw\ urn X =0.

Lwe%\) Q: \K’ {03

Ademse B LY = Vi VWx+2 = V— = 2 ( daia B viemo PYta&e'&C\M’\)~

X—2" X—2"

B Fx) =

X— —c0 X—» —c0O

Boun (=x+2)y= -(-0)+ 2 = oo



Andlisis para Matematicas de CCNN. Limites en funciones definidas en trozos o intervalos

Més adelade, dndiaremos & toorema o Bolzamo % por €0, es necesano JuAJ('L&icwr con un /wwaaf
&éb\“& Qo. ijciv\u'u&a& de Q« (rvno{ov/»-

4 s x<o = (=,0
éd@MPQo seneiWo ¢ Sea Qafund,aﬂ, ‘F(X) — { X )

)(L st X220 @ (0,00)

Dowminto bOM‘F (X) = R

Conflhm&aoq e Qos a]oLeFtoS

«F(X) es CathtvnM em ("90 ’0) ol ser una W raciona? owi?)o erva\M&or wonca se ahula .
7(’(X) es Cmlinua em (0,20) por ser una {uncian PoQinémc«.

€Q Gwico Puvds ‘Dvololm«ad—ico que Teuemos que esndiar e2 X=0 ( I (rontern entre s inlervalos ).

Conlimuidad | Yow P(x) = lom L(x)

=f(a) ; Estidiamos X =0

X> A x->at

QCMA-_ /'Y = — 0

x>0 = %(X) Pvesem‘tm en X=0 una discontimidad de o m&;w{ﬁ .
e 2 =

xQ—>O+ * 0

P(x)€ C(R-1{o})

Teorema de Weierstrass / WeierstraB (MAT CCNN)

Teorema. de Weier S—tfo\ss

Una ﬁvnc@o(» AF(X) 6 Ci [&;b] contimma en un w&rw&o cerrado 5
A canza on maximo M g un minimo wm en o witervalo [ ,b ] .

Por tasts , 0 funcion AF(X) ol svstada en [a,b] l/a,l

=L (K ) S (X)) € (X )= M VXE[a,b]




Teorema de Bolzano y su intepretacion geométrica (MAT CCNN)

/Eorev»\a de 609?:41%0
f(x)g C[O\;b] quV\O'»C;w contima en. . udervalo cerrado .

10 (a)- AF (b)< 0 Lmofpaewas de dstiuly Sigho tn los bordey deR imbeviale.

Con effas cmdiciones —> E| C G(K;b)/<F(C) =0 , es dedr exicle um Puvﬂvo
oo A& idervalo abierls e & que QA {:UV\LM;/\/ corta. o eje OX.

Y A Si {.’(x)es wna funcion ntimua en &
nervalo cerrado [a ,b ] '8 <F(&) 'l 1[’(b)
tenon Lstinds signo , entonces aroifaco\

corta necesariamen a& eje, OX (al»sa'sas ) ew,

A wmenos un Pwd'ro C AR wlervalo abiers (a,b).
€Q teorema wo Per/vnf\'c saber wdikop talces

(puiles de coite ) tiewe U Lomcizn Wi sy Docalizacion..

HESER

£(b)

Bernard Bolzano

€da.rw»p§'°'~ Whili2amdo & teorewa de Blzano , prueba que b fmcizn f(X) = C+ X - Y
corta e X en a%u’w Puvibo A intervalo [4,2].
{’(X) = CH+AX Y es conbimma on & wlervalo [4,2] por ser Folu\émc«.

f(4)=4+2-4 =-4<0

$(2)=8+4-4 =3 >0 }j f(4)-f(2) <0

Se Cuvalm Qan cm&&cion%,@«eao E' c 6(/1,21 )/<F(C) =0 ,es J?e@ﬁ,oor‘[kaedeOX.

édarm'(l&o'- Wtk 2amdo o Toorewa de 60Q-MM0, pmeba que 0a {:uno;oc\, <F(X) = 2= X+ X

con X € (0,+20) corla. ol e(j:, X en anaJ»\, PUI&R A imlervalo [:—L,A]

{(x) = 2 - X+ X es camtimma en R wlorvalo [i’v’/‘} porque &8 mrzumev&&/& Qn?av‘»tuw X>0.
e

Ha) e m e <0 Loy <o
fA)=2-A+bA=4>0

Se Cumplm Qar m&xoion%7@«eao EI C€<%24>/~F (c)=0 , es Jbecbf‘,oor‘l'o\.wQe:jeOX.



