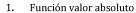


FUNCIÓN VALOR ABSOLUTO

Definimos el valor absoluto de un nº como el valor numérico con signo positivo. La fórmula queda así: $|x| = \begin{cases} -x & x < 0 \\ x & x \ge 0 \end{cases}$

Si dibujamos su gráfica:



2.
$$Dom(f) = \mathbb{R}$$

3. Continua en todo
$$\mathbb{R}$$

4. Derivable en todo $\mathbb{R} - \{0\}$, en el 0 NO es derivable, hace una esquina.

5. Puntos de corte con los ejes:
$$(0,0)$$

6. La gráfica es simétrica con respecto al eje al eje Y

7. Curvatura: no procede (está formada por dos semi-rectas)

8. Crecimiento:

a. Si
$$x > 0$$
 creciente.

b. Si
$$x < 0$$
 decreciente

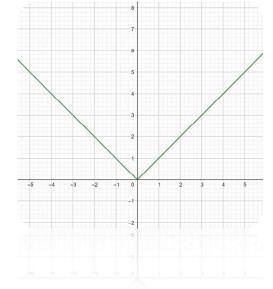
9. Tiene un mínimo absoluto en (0,0). No tiene máximo

10. Puntos de inflexión: no procede (no es una curva)

11. Asíntotas y ramas infinitas: No procede

12. Imagen, rango o recorrido: $Img(|x|) = [0, \infty)$

13. No es periódica



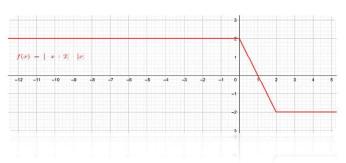
Otro ejemplo

$$f(x) = |-x + 2| - |x|$$

Lo primero que tenemos que hacer es romperla en trozos para tener una ecuación más manejable:

$$f(x) = \begin{cases} 2 & \text{si } x < 0 \\ -2x + 2 & \text{si } 0 \le x < 2 \\ -2 & \text{si } x \ge 2 \end{cases}$$

En el siguiente enlace puedes ver un vídeo de 4 minutos sobre cómo se calcula la ecuación de la función a trozos



https://www.edu.xunta.gal/centros/iesafonsoxcambre/aulavirtual/mod/resource/view.php?id=11120

1. Función relacionada con el valor absoluto

2.
$$Dom(f) = \mathbb{R}$$

3. Continua en todo \mathbb{R}

4. Derivable en todo \mathbb{R} menos en los puntos (0,2) y (2,-2) donde NO es derivable, hace "esquinas".

5. Puntos de corte con los ejes: (0,2) y (1,0)

6. La gráfica es simétrica con respecto al punto (1,0)

7. Curvatura: no procede (no es una curva sino que está formada por tres semi-rectas)

8. Crecimiento:

a. Si x < 0 constante e igual a 2

b. Si $0 \le x < 2$ decreciente

c. Si $x \ge 2$ constante e igual a -2

9. La gráfica está comprendida entre 2 y -2 por lo que está acotada siendo 2 su valor máximo y -2 el mínimo

10. Puntos de inflexión: no procede (no es una curva)

11. Asíntotas y ramas infinitas: No procede (no es una curva)

12. Imagen, rango o recorrido: Img(|x|) = [-2,2]

13. No es periódica

FUNCIONES DEFINIDAS A TROZOS

Llamamos así a aquellas funciones que vienen definidas por diferentes ecuaciones según el intervalo en el que se encuentre la x.

Un claro ejemplo es la función absoluto: $|x| = \begin{cases} -x, & x < 0 \\ x, & x \ge 0 \end{cases}$ que ya vimos anteriormente.

En estas funciones hay que dibujar cada "trozo" en donde esté definido.

Ejemplo:
$$g(x) = \begin{cases} -3x + 2 & si \ x \le 1 \\ -(x - 3)^2 + 9 & si \ 1 < x \le 3 \\ 6 & si \ x < 4 \end{cases}$$

- 1. Función definida a trozos. Tiene 3 tramos: en el 1° es una semi-recta decreciente, en el 2° un fragmento de parábola y en el 3° una semi-recta constante
- 2. $Dom(f) = \mathbb{R} (3,4]$ o lo que es lo mismo: $(-\infty,3] \cup (4,\infty)$ porque en el intervalo (3,4] no está definida
- 3. Discontinua en:
 - a. x=1 (el valor a su izquierda y a su derecha son distintos (da un salto de magnitud 6)
 - b. En el intervalo (3,4] porque ahí no está definida
- 4. Donde no es continua no puede ser derivable, en el resto sí por ser fragmentos de funciones polinómicas.
- 5. Punto de corte con los ejes: (0,2)
- 6. Simetría: ninguna
- 7. Curvatura: en el 1^{9} y 3^{9} tramo no tiene (son dos semi-rectas), en el 2^{9} tramo es cóncava
- 8. Crecimiento:
 - a. 1° tramo $(x \le 1) \Rightarrow$ decreciente
 - b. 2° tramo $(1 < x \le 3) \Rightarrow$ creciente
 - c. 3° tramo $(x < 4) \Rightarrow$ constante
- 9. Tiene un mínimo absoluto en (1,-1). No tiene máximo absoluto, sí tendría un máximo relativo en E=(3,9)
- 10. Puntos de inflexión: no procede
- 11. Asíntotas y ramas infinitas: no tiene
- 12. Imagen, rango o recorrido: $Img(g) = [-1, \infty)$
- 13. No es periódica

