

TEMA 12: CÁLCULO INTEGRAL

PRIMITIVA DE UNA FUNCIÓN

Sea f(x) función, F(x) es PRIMITIVA de f si se cumple F'(x) = f(x), en ese caso $\int f(x) dx = F(x) + C$

TABLA DE INTEGRALES INMEDIATAS

	Sencilla	Con regla de la cadena	Vale para todo
Polinómicas	$\int k dx = kx + C$	$\int x^n dx = \frac{x^{n+1}}{n+1} + C$	$\int u^n du = \frac{u^{n+1}}{n+1} + C$
Logarítmicas	$\int \frac{1}{x} dx = \ln x + C$	$\int \frac{f'}{f} dx = \ln f + C$	$\int \frac{1}{u} du = \ln u + C$
	$\int e^x dx = e^x + C$	$\int e^f f' \ dx = e^f + C$	$\int e^u \ du = e^u + C$
Exponenciales	$\int a^x dx = \frac{a^x}{\ln a} + C$	$\int a^f f' dx = \frac{a^f}{\ln a} + C$	$\int a^u du = \frac{a^u}{\ln a} + C$
Seno	$\int \sin x dx = -\cos x + C$	$\int f' \sin f dx = -\cos f + C$	$\int \sin u du = -\cos u + C$
Coseno	$\int \cos x dx = \sin x + C$	$\int f' \cos f \ dx = \sin f + C$	$\int \cos u \ du = \sin u + C$
Tanganta	$\int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C$	$\int \frac{f'}{\cos^2 f} dx = \operatorname{tg} f + C$	$\int \frac{1}{\cos^2 u} du = \operatorname{tg} u + C$
Tangente	$\int (1 + tg^2 x) dx = \tan x + C$	$\int f'(1+tg^2 f)dx = tg f + C$	$\int (1 + \operatorname{tg}^2 u) du = \operatorname{tg} u + C$
Arco seno	$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C$	$\int \frac{f'}{\sqrt{1-f^2}} dx = \arcsin f + C$	$\int \frac{1}{\sqrt{1-u^2}} du = \arcsin u + C$
Arco coseno	$\int \frac{1}{\sqrt{1-x^2}} dx = -\arccos x + C$	$\int \frac{f'}{\sqrt{1-f^2}} dx = -\arccos f + C$	$\int \frac{1}{\sqrt{1-u^2}} du = -\arccos u + C$
Arco Tangente	$\int \frac{1}{1+x^2} dx = \operatorname{arctg} x + C$	$\int \frac{f'}{1+f^2} dx = \operatorname{arctg} f + C$	$\int \frac{1}{1+u^2} du = \operatorname{arctg} u + C$

FICHA INTEGRALES INMEDIATAS

■ NÚMEROS Y POTENCIAS SENCILLAS

a)
$$\int 1 dx$$

b)
$$\int 2 dx$$

c)
$$\int \sqrt{2} dx$$

d)
$$\int 2x \, dx$$

e)
$$\int x \, dx$$

f)
$$\int 3x \, dx$$

g)
$$\int 7x \, dx$$

h)
$$\int x^2 dx$$

i)
$$\int \frac{1}{2} x^2 dx$$

■ POTENCIAS DE EXPONENTE ENTERO

a)
$$\int (-1)x^{-2} dx$$

b)
$$\int x^{-2} dx =$$

c)
$$\int \frac{5}{x^2} dx =$$

d)
$$\int \frac{1}{x^3} dx$$

e)
$$\int \frac{2}{x^3} dx$$

f)
$$\int \frac{5}{(x-3)^3} dx$$

LAS RAÍCES TAMBIÉN SON POTENCIAS

a)
$$\int \frac{3}{2} x^{1/2} dx$$

b)
$$\int \frac{3}{2} \sqrt{x} \, dx =$$

c)
$$\int 7\sqrt{x} dx =$$

d)
$$\int \frac{1}{2} x^{-1/2} dx$$

e)
$$\int \frac{1}{2\sqrt{x}} dx =$$

f)
$$\int 5\sqrt{x^3} dx =$$

a)
$$\int \frac{1}{x} dx = \ln |x|$$

b)
$$\int \frac{1}{5x} dx = -\frac{1}{5}$$

c)
$$\int \frac{1}{x+5} dx = \ln |x+5|$$

d)
$$\int \frac{3}{2x+6} dx$$

- ALGUNAS FUNCIONES TRIGONOMÉTRICAS
 - a) $\int \cos x \, dx$
 - b) $\int 2\cos x \, dx$
 - c) $\int cos\left(x+\frac{\pi}{2}\right)dx$
 - d) $\int \cos 2x \, dx$
 - e) $\int (-sen x) dx$
 - f) $\int sen x dx$
 - g) $\int sen(x-\pi) dx$
 - h) $\int sen 2x dx$
- $i) \int (1+tg^2 2x) dx$
- $j) \int tg^2 2x \, dx$
- ALGUNAS EXPONENCIALES
 - a) $\int e^{x-1} dx$
 - b) $\int e^{2x+1} dx$

PRIMITIVAS. EJERCICIOS BÁSICOS

1 Halla:

a)
$$\int x^4 dx$$

b)
$$\int (5x^3 - 8x^2 + 2x - 3) dx$$

c)
$$\int \sqrt[3]{x} \, dx$$

d)
$$\int \frac{1}{\sqrt{x}} dx$$

e)
$$\int \frac{1}{5\sqrt{x^2}}$$

f)
$$\int \frac{3}{x^2}$$

g)
$$\int \frac{5}{6x^4} dx$$

h)
$$\int \frac{\sqrt[3]{2x}}{\sqrt{3x}} dx$$

i)
$$\int \frac{\sqrt[3]{x} + \sqrt{5x^3}}{3x} dx$$

j)
$$\int (\sqrt{5}x - 3)^4 dx$$
 k) $\int \sqrt[3]{(7x - 6)^2} dx$

k)
$$\int \sqrt[3]{(7x-6)^2} \, dx$$

1)
$$\int \frac{5x^3 + 6x^2 - \sqrt{2}x + \sqrt{3}}{x} dx$$

m)
$$\int \frac{2x^4 - 6x^3 + 5x}{x + 2} dx$$
 n) $\int \frac{5dx}{6 - 4x}$

n)
$$\int \frac{5dx}{6-4x}$$

$$\tilde{n}) \int \frac{2x^4 + 6x - 3}{x - 2} \, dx$$

o)
$$\int \frac{7x^4 - 5x^2 + 3x - 4}{x^2} dx$$

b)
$$\int (5\cos x + 3^x) dx$$

2 a)
$$\int (3x-5 tg x) dx$$
 b) $\int (5 \cos x + 3^x) dx$ c) $\int (3 tg x - 5 \cos x) dx$ d) $\int (10^x - 5^x) dx$

$$d) \int (10^x - 5^x) dx$$

3 a)
$$\int \frac{3}{x^2+1} dx$$

b)
$$\int \frac{2x}{x^2+1} dx$$

c)
$$\int \frac{x^2 - 1}{x^2 + 1} dx$$

3 a)
$$\int \frac{3}{x^2 + 1} dx$$
 b) $\int \frac{2x}{x^2 + 1} dx$ c) $\int \frac{x^2 - 1}{x^2 + 1} dx$ d) $\int \frac{(x+1)^2}{x^2 + 1} dx$

$$4$$
 a) $\int sen^2 x dx$

b)
$$\int \frac{dx}{1+9x^2}$$

c)
$$\int \frac{dx}{1 + 8x^2}$$

d)
$$\int \frac{dx}{25 + 9x^2}$$

e)
$$\int \frac{dx}{3+2x^2}$$

d)
$$\int \frac{dx}{25 + 9x^2}$$
 e) $\int \frac{dx}{3 + 2x^2}$ f) $\int \frac{dx}{\sqrt{1 - 9x^2}}$

$$g) \int \frac{dx}{\sqrt{1-8x^2}}$$

$$h) \int \frac{dx}{\sqrt{25-9x^2}}$$

i)
$$\int \frac{dx}{\sqrt{3-2x^2}}$$

$$j) \int e^{5x-2} dx$$

INTEGRALES NO INMEDIATAS IMPORTANTES (PARA 2º)

$$\int f' \ln f \, dx = f(\ln f - 1) + C$$

$$\int f' \ln f \, dx = f(\ln f - 1) + C \qquad \int f' \cdot \operatorname{tg} f \, dx = -\ln|\cos f| + C$$

$$\int \frac{f'}{\operatorname{tg} f} \, dx = \ln|\operatorname{sen} f| + C$$

INTEGRALES RACIONALES

Las llamamos así cuando estén formadas por el cociente de dos polinomios $\int \frac{D(x)}{d(x)} dx$

Distinguimos tres casos en función del grado:

A) SI $\partial D \geq \partial d$

Dividimos los dos polinomios y aplicamos la regla $D = d \cdot C + R$ (Dividendo = divisor por cociente más resto) Si divimos esa expresión por el divisor, d, nos queda:

$$\frac{D}{d} = C + \frac{R}{d}$$

Aplicándolo en la integral, obtenemos integrales inmediatas:

$$\int \frac{D}{d} = \int C + \int \frac{R}{d}$$

B) SI $\partial D < \partial d$ Y d TIENE TODAS SUS RAÍCES SIMPLES

Descomponemos en factores $d(x) = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n)$ y planteamos:

 $\frac{D}{d} = \frac{A}{(x - \alpha_1)} + \frac{B}{(x - \alpha_2)} + \dots + \frac{N}{(x - \alpha_n)}$ calculamos los números A, B, \dots, N y los aplicamos a la integral, que queda así dividida en integrales inmediatas:

$$\int \frac{D}{d} = \int \frac{A}{(x-\alpha_1)} + \int \frac{B}{(x-\alpha_2)} + \dots + \int \frac{N}{(x-\alpha_n)} = A \ln|x-\alpha_1| + B \ln|x-\alpha_2| + \dots + N \ln|x-\alpha_n|$$

C) SI $\partial D < \partial d$ Y d TIENE ALGUNA RAÍZ REAL MÚLTIPLE

Descomponemos en factores $d(x)=(x-\alpha_1)(x-\alpha_2)\cdots(x-\alpha_n)^k$ (la última se repite k veces) y planteamos:

$$\frac{D}{d} = \frac{A}{(x - \alpha_1)} + \frac{B}{(x - \alpha_2)} + \dots + \frac{N_1}{(x - \alpha_n)} + \frac{N_2}{(x - \alpha_n)^2} + \dots + \frac{N_k}{(x - \alpha_n)^k}$$

Calculamos los números $A, B, \dots, N_1, \dots, N_k$ y resolvemos integrales logarítmicas y polinómicas.

INTEGRALES POR PARTES

Se aplica la regla $\int u \ dv = uv - \int v \ du$ (un **d**ía **v**i un **v**iejo **v**estido **d**e **u**niforme)

Seguimos los pasos:

1. Elegimos como u la función que aparezca primero en la palabra y la otra será dv



- 2. Calculamos du derivando u (ponemos dx al final ya que estamos derivando con respecto a x)
- 3. Calculamos v por la integral de dv
- 4. Aplicamos la fórmula $\int u \, dv = uv \int v \, du$
- 5. Se repite el procedimiento con la nueva integral hasta llegar a una integral inmediata

EJEMPLOS DE ELECCIÓN ENTRE u Y dv

	La integral original $\int u \ dv$	Elegimos variables	Calculamos las recíprocas	Aplicamos fórmula $uv-\int v\ du$
Tipo I	$\int (x^2 - 4x) \cos 2x dx$ $Polinomio \cdot Seno o \cos$	$u = x^2 - 4x$ $dv = \cos 2x dx$	$du = (2x - 4)dx$ $v = \int \cos 2x dx = \frac{\sin 2x}{2}$	$(x^2-4x)-\int\frac{\sin 2x}{2}(2x-4)dx$ En este caso hay que repetir la regla con la nueva integral, cada vez se reduce 1 el grado del polinomio (en el siguiente paso ya se termina)
Tipo II	$\int (x+5)e^x dx$ P olinomio · E xponencial	$u = x + 5$ $dv = e^x dx$	$du = dx$ $v = e^x$	$(x+5)e^x - \int e^x dx = (x+5)e^x - e^x + C$
Tipo III	$\int x^2 \ln x dx$ P olinomio • E xponencial	$u = x^2$ $dv = \ln x dx$	$du = 2x dx$ $v = x(\ln x - 1)$	$x^2x(\ln x - 1) - \int x(\ln x - 1)2x dx$ repetir la regla con la nueva integral, cada vez se reduce 1 el grado del polinomio (en el siguiente paso ya se termina)
Tipo IV	$\int \operatorname{arctg} x dx$ $\boldsymbol{A}rcotg \cdot \boldsymbol{P}olinomio$	$u = \operatorname{arctg} x$ $dv = 1 dx$	$du = \frac{1}{1+x^2} dx$ $v = x$	$\arctan x \cdot x - \int x \frac{1}{1+x^2} dx = x \cdot \arctan x - \frac{\ln(1+x^2)}{2} + C$
Tipo V	$\int e^x \cdot \cos x dx$ Exponencial · Seno o cos	$u = e^x$ $dv = \cos x dx$	$du = e^x dx$ $v = \sin x$	$e^x \sin x - \int (\sin x) e^x dx$ Cíclica, repetimos y en siguiente paso volvemos a obtener la del principio, despejamos y obtenemos el resultado

INTEGRALES POR CAMBIO DE VARIABLE

Consiste en sustituir una parte del integrando por otra función o variable de forma que podamos resolver la integral por alguno de los métodos anteriores.

CÓMO ELEGIR LA VARIABLE ADECUADA

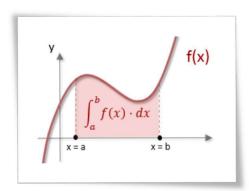
Si en el integrando aparecen	Sugerencia			
Raíces cuadradas	$t = \sqrt{Polinomio}$			
Raíces no cuadradas	$t = \sqrt[n]{polinomio}$	Siendo n = mínimo común índice de las raíces		
Funciones exponenciales	$t = e^{nx}$	Siendo n = menor índice de los exponentes del integrando		
Funciones logarítmicas	$t = \ln x$			

PASOS A SEGUIR

- 1. Elegir el cambio de variable adecuado (ver tabla)
- 2. Despejar x en la ecuación anterior
- Derivar ambos lados de la ecuación
- 4. Sustituir t, x, dt en la integral original y ordenarla (la x debería desaparecer y quedar la integral dependiendo sólo de t)
- 5. Resolver la integral por los métodos anteriores (por partes, racional etc.)
- 6. Volver a ponerlo todo en función de x deshaciendo el cambio de variable en la integral ya resuelta.

INTEGRAL DEFINIDA

Definimos el valor absoluto de la integral entre dos límites como el área de la región delimitada por la gráfica de f, el eje de abscisas, X, y las rectas x=a, x=b, incluido el signo. Como es un área, debemos tomar el valor absoluto (no tiene sentido hablar de áreas negativas) por eso es muy importante ver el recinto dibujado y elegir bien los límites de integración para evitar las áreas negativas o que se cancelen unas con otras.



Si F(x) es una primitiva de f(x) entonces:

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

PROPIEDADES

$$\int_{a}^{b} f = -\int_{b}^{a} f$$

$$\int_{a}^{a} f = 0$$

$$\int_{a}^{b} k \cdot f = k \cdot \int_{a}^{b} f$$

$$\int_{a}^{b} (f+g) = \int_{a}^{b} f + \int_{a}^{b} g$$

$$\forall c \in (a,b) \Rightarrow \int_a^b f = \int_a^c f + \int_c^a f$$