Rudimentos de Python

Para comezar

A linguaxe Python esta desefiada para que os seus codigos
de programa sexan faciles de ler e entender. E unha grande
linguaxe para iniciarse na programacién con cadigo, e a
medida que se vai avanzando, afrontar proxectos cada vez
mais complexos. Esta é a grande vantaxe de Python: a
sintaxe é facil e as amplas posibilidades que ofrece.

Nesta unidade abordaremos os rudimentos da linguaxe,
vendo como se desenvolven en Python os elementos
habituais, presentes noutros sistemas de programacion.

Obxectivos

Vinicius Depizzol en Wikimedia Commons.

Python icon done in the Tango! style

(GNU/GPL)

» Coriecer as caracteristicas principais e as posibilidades da linguaxe de programacion

Python

« Interpretar programacions basicas en Python e ser quen de modificalas.

o Crear un programa basico con Python

Licenciado baixo a Licenza Creative Commons Recofiecemento Compartir igual 4.0

Rudimentos de Python

Que é Python

Python é unha linguaxe de programacion por cédigo de
proposito xeral, cunha sintaxe moi sinxela e, inda asi, con
grandes posibilidades. E unha linguaxe moi interesante
para aprender na medida en que podemos percibir a sta
aplicacion no mundo profesional.

Programase mediante o IDE de Python ou de calquera
editor de texto como pode ser Wordpad en Windows ou
Gedit en Linux. Tamén existen interfaces externas
especificas que facilitan a creacion de cadigo.

Existen duas versions, coas suas correspondentes
actualizacions: Python 2 ou Python 3. Ambas as versions

notKlaatu en Openclipart. Python Generic Application

Logo (Dominio publico)

de Python coexisten no tempo para garantir a maior compatibilidade posible con todas as

ferramentas existentes na rede, sendo duas versions vivas e actualizadas. De cara a aprendizaxe

do usuario as diferenzas son minimas.

Caracteristicas fundamentais Aplicacions

Mantemento, desenvolvemento e licenza

Caracteristicas fundamentais

E unha linguaxe interpretada

Executase empregando un programa intermedio (intérprete), no canto de

complilar directamente a unha linguaxe maquina coma nas linguaxes

compiladas.

Orientada a obxectos

E unha linguaxe de programacién que utiliza compofientes de software:

obxectos. Os obxectos son compofientes ou codigo de software que

contefien en si mesmos tanto as suas caracteristicas (campos) como os seus
comportamentos (métodos).

E multiparadigma

Soporta mais dun paradigma de programacion. Permite programar
empregando mais dun estilo de programacion, coma por exemplo:

Programacion imperativa

Paradigma de programacién que describe a programacion en
termos de estado do programa e sentenzas que cambian o
devandito estado. Os programas imperativos son un conxunto de
instrucions que lle indican ao computador como realizar unha
tarefa.

Programacién funcional

Programacion declarativa baseada no emprego de funcions
matematicas.

Emprega unha tipaxe dinamica

Non é preciso declarar o tipo de dato que se vai conter unha determinada
variable, sendn que o seu tipo se declara no tempo de execucion

Xestion automatica de memoria

Mediante a conta de referencias pddese establecer, cando non existe
referencia algunha, bloques de memoria que se poden liberar.

Extensa biblioteca estandar

A sua biblioteca (STL), asi coma os mdédulos aportados por terceiros cobren
practicamente todas as tarefas.

Integrable dentro das aplicaciéns

Pddese integrar noutras aplicacions coma unha interface de scripting.

Aplicaciéns

Ao ser unha linguaxe multipropésito e altamente portable, Python utilizouse para

desenvolver:

Aplicaciéns de escritorio.

Aplicacions web.

Analise de datos.

Administracién de servidores.
Seguridade e analise de penetracion.
Computo na nube.

Computo cientifico.

Analise de linguaxe natural.

Vision artificial.

Animacion, videoxogos e imaxes xeradas por computadora.
Aplicaciéns mobiles.

Mantemento, desenvolvemento e licenza

Python é administrado pola Python Software Foundation. Posue unha licenza de codigo

aberto, denominada Python Software Foundation License, que é compatible coa Licenza

publica xeral de GNU a partir da version 2.1.1, e incompatible en certas versiéns

anteriores.

- t h ON S9mwage
e FOUNDATION

Python Software Foundation. Python Software Foundation (PSE LICENSE)

A ter en conta: Por que Python?

A seguinte cita pode axudarnos a compender a razén de que en moitas ocasions se escolla

a linguaxe Python. A continuacion temos o video Por que aprender a programar con

Python? que desenvolve a mesma idea.

[Por que aprender a programar con Python?

Por que Python?

‘ ‘ Python é unha linguaxe que todo o mundo deberia cofiecer. A
sua sintaxe simple, clara e sinxela; o tipado dinamico, o xestor
de memoria, a gran cantidade de librerias dispotiibles e a
potencia da linguaxe, entre outros, fan que desenvolver unha
aplicacién en Python sexa sinxelo, moi rapido e, o que é mais
importante, divertido. A sintaxe de Python é tan sinxela e
proxima a linguaxe natural que os programas elaborados en
Python parecen "pseudocédigo”. Por este motivo tratase
ademais dunha das mellores linguaxes para comezar a
programar.

Ratil Gonzalez Duque en "Python para todos". [Documento pdf
en lina] disponible en:

https://launchpadlibrarian.net/18980633/Python%20para%2otodos.pdyf.
(Traducién libre)

https://www.youtube.com/embed/9r2wF93vOkM

José Domingo Mufioz en OpenWebinars. Por qué aprender a programar con python? (CC BY-SA)

Orixe de Python

Python foi creado a finais dos anos oitenta por Guido
van Rossum no Centro de Matematicas e
Tecnoloxias da Informacion (CWI, Centrum Wiskunde
& Informatica), nos Paises Baixos, como sucesor do
linguaxe de programacion ABC, capaz de manexar
excepcions e interactuan co sistema operativo

Amoeba.3.

Wikimedia Commons. Monty Python settanta (Dominio

O nome da linguaxe provén do cariio do seu creador publico)
polos humoristas britanicos Monty Python. Van

Rossum é o autor principal de Python, cun fundamental papel na direccién que tomou a
linguaxe

Fonte: Colaboradores de Wikipedia. Python [en lifia]. Wikipedia, La enciclopedia libre, 2018. Dispofiible en

<https://es.wikipedia.org/w/index.php?title=Python&oldid=107334378>.

Rudimentos de Python

Primeiros pasos

O
(J
\J
0

\

Manuel Torres Bua. Primeiros pasos. (CC BY-SA). A partir de imaxe: Clker-Free-Vector-Images en Pixabay. footprints. (CCO)

O programa preséntase con catro
componfentes . Python 3.6

1. IDLE (integrated IDLE (Python 3.6 32-bi)
development and learning
environment), é o editor de
Python por defecto.
Poderiamos utilizar moitos

outros pero é ideal para

Python 3.6 Manuals (32-bit)

comezar.

@ Python 3.6 (32-bit
B

Python 3.6 Module Docs (32-bit)

2. Python 3.6 é o intérprete...
E o programa que executaré , _ T
Manuel Torres Bua. Componentes de Python (Dominio publico)

as ordes que lle
escribamos.

3. Manuais. E importante consultalos se queremos afondar mais.

4. Documentos de Médulos. Permiten ampliar as posibilidades da linguaxe.

Rudimentos de Python

Primeiros pasos

O
(J
\J
0

\

Manuel Torres Bua. Primeiros pasos. (CC BY-SA). A partir de imaxe: Clker-Free-Vector-Images en Pixabay. footprints. (CCO)

Ao comezar a programar, debemos ter presentes algunhas caracteristicas basicas da
linguaxe Python que a diferencian doutras linguaxes de programacion.

(>>>) Prompt

E o punto que nos sinala o IDLE para introducir instruciéns.
Sen punto e coma

A instrucion se pecha sen pofier nada, nin o punto e coma que se pon
noutras linguaxes. No IDLE para executar a instrucion o unico que facemos

e pulsar enter d

(--2) Cada instrucién nunha liha

Un programa de Python esta formado por lifias de texto. Recoméndase
que cada lifia contefa unha unica instrucion.

>>> print ("0la")

Ola

>>> print ("Que tal estas?")
Que tal estas?

uvi h W N R

>>>

Punto e coma

E posible incluir mais dunha instrucion nunha lifia, pero non é
recomendable. S6 se utiliza esta caracteristicas en programas moi
complexos. Para facelo sé hai que separar as instrucions con punto e
coma(;)

>>> print ("0la"); print ("Que tal estds?")
Ola
Que tal estas?

A wWw N R

>>>

Separacion de lifas

Por motivos de lexibilidade recoméndase que as linas non superen os 79
caracteres. Se unha instrucién supera esa lonxitude, pddese dividir en
varias lifas usando o caracter contrabarra (\):.

1 >>> #iDeclaramos avariable nome

2 >>> nome="0 meu nome € Pepe"

3 >>> #tichamamos a variable

4 | >>> nome

5 '0 meu nome é Pepe'

6 | >>> #facemos o mesmo con separacidon de linas
7 >>> nome="0 meu nome é\Pepe"

8 >>> #chamamos de novo & variable
9 | >>> nome

10 '0o meu nome é Pepe’

11 | >>>

Espazos

Os elementos da linguaxe separanse por espazos en branco
(normalmente, un), ainda que nalguns casos non se escriben espazos:

o Entre os nomes das funcions e a paréntese

o Antes dunha coma (,)

o Entre os delimitadores e o seu contido (paréntese, chaves,
corchetes ou cominas)

Os espazos non son significativos, € dicir, da o mesmo un espazo que
varios, excepto ao principio dunha lifia. Os espazos ao principio dunha lifia
(o sangrado) indican un nivel de agrupamento. Unha liha non pode conter
espazos iniciais, a menos que forme parte dun bloque de instruciéns ou
dunha instrucién dividida en varias lifias.

Comentarios

Para agregar comentarios na programacion basta con pofer o cancelo (#)
despois do prompt. Todo o que escribamos a continuacién seran
comentarios que non interfiren na programacioén. Se o que desexamos é
agregar textos de comentarios en varias linas, debemos pechar o texto
entre comifias ou paragrafos triplos.

Os textos de comentario en varias linas podense empregar para
xerar documentacién de axuda: son sos denominados
Docstrings.

Identation

En moitas ocasiéns é necesario delimitar bloques de cadigo para
interpretar ben os programas. O que facemos para identificar un bloque é
pofer a primeira instrucion pegada a marxe esquerda, e as seguintes lifias
que dependen da primeira sangradas a dereita. (Vaino facer a consola
directamente)

def fromlist(cls, v):
if not isinstance(v, list):
raise TypeError
inst = cls()
inst.v = v
return inst

Rudimentos de Python

Primeiros pasos

)
s

Manuel Torres Bua. Primeiros pasos. (CC BY-SA). A partir de imaxe: Clker-Free-Vector-Images en Pixabay. footprints. (CCO)

« As palabras reservadas de Python (as que forman parte da linguaxe)
mostranse en cor laranxa.

» As cadeas de texto mostranse en verde.

» Os resultados das ordes escribense en azul.
» As mensaxes de erro méstranse en vermello.
» As funciéns méstranse en purpura.

(Os comentarios tamén apareceran en vermello)

A ter en conta: Tipos de arquivo en Python

Rudimentos de Python

Palabras reservadas

As palabras reservadas (keywords) son aquelas que non se poden empregar para homear
variables, xa que tefien unha funcion especifica en Python. Son o nucleo da linguaxe Python.

1 False class finally is return
2 | None continue for lambda try

3 | True def from nonlocal while
4 | and del global not with

5 | as elif if or yield
6 | assert else import pass

7 | break except in raise

Podemos ver a funcién de cada palabra no seguinte documento:

» Palabras reservadas del lenguaje en "Recursos Python". Disponible en:
https://recursospython.com/guias-y-manuales/palabras-reservadas-del-lenguaje/

Licenciado baixo a Licenza Creative Commons Recofiecemento Compartir igual 4.0

Rudimentos de Python

Datos

En Python todos os seus elementos son obxectos. Tamén, unha vez que se identifican, os datos
convertense obxectos relacionados co tipo ao que pertencen.

©0 060

Manuel Torres Bua. Datos (CC BY-SA) a partir de imaxes de |O-Images en Pixabay.(CCO0)

Numeérico Loxico Caracter

Numérico

Enteiros (int long)

Os numeros enteiros son aqueles que non tefien decimais, tanto positivos
coma negativos (ademais do cero). En Python pddense representar mediante
o tipo int (de integer, enteiro) ou o tipo long (longo). A uUnica diferenza é que
o tipo long permite almacenar nimeros mais grandes. E aconsellable non
utilizar o tipo long a menos que sexa necesario, para non malgastar memoria.

Decimal: 65, 14
Binario: ©beleell , ebliel
Hexadecimal: ox18 , ©x3cf4
Octal: @30 , 074

A wWw N R

Reais (floaft)

Os numeros reais son o conxunto de obxectos flotantes (float). Para
representar un numero real en Python escribese primeiro a parte enteira,

seguido dun punto e por ultimo a parte decimal.(real = 0.2703). Tamén se
pode utilizar notacion cientifica, e engadir unha e (de exponente) para indicar
un expofiente en base 10. Por exemplo: real = 0.1e-3. Hai que ter coidado co
uso da coma: un numero decimal con coma, Python o interpreta coma unha
parella de numeros.

1 | 3.141595
28
3 -62.5974

Nimeros complexos (complex)

Python pode facer calculos con nimero complexos. Aparece a parte real, o
operador "+" e a parte imaxinaria acompanada da letra "j" ao final.

1| 6.32 + 457
2 | 0.117j

3 | (2 +03)

4 | 1j

Loxico

O tipo de datos léxico, tamén chamado booleano é un tipo que so ten dous valores
posibles: verdadeiro e falso. Este tipo de dato Usase para realizar operaciéns loxicas
sobre os datos, tomar decisions e controlar a execucién dos programas.

« Se a expresion loxica € verdadeira, o resultado € True (con maiusculas ao comezo).
« Se a expresion l6xica non é verdadeira, o resultado é False (en maiusculas ao
comezo).

False é numericamente igual a 0. Calquera outro numero € igual a Verdadeiro eo seu
valor predeterminado ¢é 1.

Manuel Torres Bua. Verdadeiro e falso. (CC
BY-SA). A partir de imaxe: Geralt en Pixabay.
Verdadeiro e falso. (CC BY-SA.)

Caracter

O tipo de datos de caracter permite procesar letras, nimeros, simbolos e ideogramas ao
asociar un cédigo numérico a cada caracter que se desexa representar. Python 3 utiliza a
codificacion UTF-8 por defecto.

Os caracteres agrupanse en cadeas de caracteres. As cadeas son secuencias de
) ou apéstrofos (')

caracteres entre comifias (

A ter en conta

Hai unha serie de funcions que especialmente serven para tratar os diferentes tipos de
datos

Funcions relativas aos tipos de datos

type()

Identifica o tipo de dato dunha variable.

1 | type("0Ola")
str
3 | type(12)

4 | int
5 | type(23j)
6 | complex

str()

Transforma un obxecto (compatible) nunha cadea de caracteres.
int()

Transforma un obxecto (compatible) nun obxecto tipo int (enteiro).
Pode converter obxectos de tipo str a un numero enteiro.

Trunca os obxectos de tipo float & parte enteira.

True é convertido en 1 e False en 0.

(Non é compatible con obxectos tipo complex)

float()
Transforma a un obxecto compatible a un de tipo float.

Pode converter obxectos de tipo str que contefian representen correctamente a
un numero real.

E compatible cos obxectos tipo int.

True é convertido en 1.0 e False en 0.0.

(Non é compatible con obxectos tipo complex)

complex()

Transforma a un obxecto compatible a un de tipo complex.
Converte obxectos de tipo str a un numero real.

Transforma a un obxecto de tipo complex a un par de nimeros xa sexan int ou
float. Se s6 se da un numero int ou float, este sera identificado como o
compofiente real e o compofiente complexo sera 0 j.

bool()

Transforma en boloneado a un obxecto

O 0 éigual a False.

Calquera outra cousa diferente de 0 é True.

Licenciado baixo a Licenza Creative Commons Recofiecemento Compartir igual 4.0

Rudimentos de Python

Expresions e Declaracions

Unha expresioén € unha combinacion de valores, operadores, funcions e métodos que dan como
resultado un valor nunha unica lifa.

>>> 1+1

2

>>>

>>> 45>=11

True

>>>

>>> "carro".upper()
"CARRO'

As declaraciéns son unidades de codigo que o interprete de Python pode executar. En realidade
unha declaracion € un tipo de expresién. O intérprete de Python permite executar multiples
expresions nunha soa, separandoas por punto e comas ";". Neste caso, s6 se despregara o
resultado da ultima expresion executada.

>>> a=3; b=a*4.,5; b; a+ 5
13.5

8

>>>

ar t-meny

Cart-icon-wr
—Outer tl’anspar ol

ent he

-sf-menu > 1i. rurrentadp:;:z;
~sf-menu > 14, - CUrrent-menu-——zmsss s

> ul > i > azhover » .

ul #search-btn a: hover
sf-menu > 14

——er

-

Span i

Manuel Torres Bua. Expresions (CC BY-SA). A partir da imaxe: Pexels en Pixabay. coding.. (CC0)

Licenciado baixo a Licenza Creative Commons Recofiecemento Compartir igual 4.0

Rudimentos de Python

Operadores

Un operador € un simbolo, un caracter ou unha combinacion de varios caracteres que forman
parte das regras sintacticas de Python e permiten realizar unha determinada operacién entre un ou
mais datos (operandos) que produce un resultado. Temos varios tipos.

Operador Descricion
+ Suma

- Resta

- Negativo

*k%

Multiplicacion

* Expofiente

/ Division

/" Division enteira
% Residuo

Regras de precedencia en operacions aritméticas.

Os operadores gardan as seguintes regras de precedencia seguindo unha secuencia de
esquerda a dereita:

1. Parénteses.
2. Expofiente.

3. Multiplicacion.
4. Division.

5. Suma.

6. Substracion.

Rudimentos de Python

Operadores

Un operador € un simbolo, un caracter ou unha combinacion de varios caracteres que forman
parte das regras sintacticas de Python e permiten realizar unha determinada operacién entre un ou
mais datos (operandos) que produce un resultado. Temos varios tipos.

Operador Descricion
+ Concatenacion

\ Repeticion

Rudimentos de Python

Operadores

Un operador € un simbolo, un caracter ou unha combinacion de varios caracteres que forman
parte das regras sintacticas de Python e permiten realizar unha determinada operacién entre un ou
mais datos (operandos) que produce un resultado. Temos varios tipos.

Operador Avalia
== ==b jaigual ab?

I= a !=b ¢a distinta de b?

> a > b ja maior que b?
< a < b ¢a menor que b?
>= a >= b g a maior ou igual que b?

<= a <= b ga menor ou igual que b?

Rudimentos de Python

Operadores

Un operador € un simbolo, un caracter ou unha combinacion de varios caracteres que forman
parte das regras sintacticas de Python e permiten realizar unha determinada operacién entre un ou
mais datos (operandos) que produce un resultado. Temos varios tipos.

Operador Avalia...
or a or b Cumprese a ou b?
and a and b Cumprese a e b?

not not x Contrario a x

Rudimentos de Python

Operadores

Un operador € un simbolo, un caracter ou unha combinacion de varios caracteres que forman
parte das regras sintacticas de Python e permiten realizar unha determinada operacién entre un ou
mais datos (operandos) que produce un resultado. Temos varios tipos.

Operador Avalia...
in Un obxecto dentro de outro?

not in Un obxecto non esta dentro de outro

Rudimentos de Python

Operadores

Un operador € un simbolo, un caracter ou unha combinacion de varios caracteres que forman
parte das regras sintacticas de Python e permiten realizar unha determinada operacién entre un ou
mais datos (operandos) que produce un resultado. Temos varios tipos.

Empréganse para ligar un obxecto ou valor cun nome

Operador Descricién Exemplo

= Asignacion simple X=y

+= Suma x+=yequivaleax=x+y
-= Resta X-=yequivaleax=x-y
*= Multiplicacion X *=yequivaleax=x"*y
= Exponente X **=yequivaleax=x**y

/= Division x/=yequivaleax=x/y

Operador Descricion Exemplo
/= Division enteira x//=yequivaleax=x/y

%= Residuo de division X %=yequivaleax=x%y

Fonte: “Tipos de datos basicos y operadores”, pythonista.mx [En lifia]. Dispofible:

https://pythonista.io/cursos/py101/tipos-de-datos-basicos-y-operadores.. (CC BY SA)

Licenciado baixo a Licenza Creative Commons Recofecemento Compartir igual 4.0

Rudimentos de Python

Operadores

Un operador € un simbolo, un caracter ou unha combinacion de varios caracteres que forman
parte das regras sintacticas de Python e permiten realizar unha determinada operacién entre un ou
mais datos (operandos) que produce un resultado. Temos varios tipos.

Calculos que implican a cada bit que conforma un nimero binario.

Operador Descricion

& AND

| OR

A XOR

<< Mover x bits a esquerda

>> Mover x bits a dereita

Rudimentos de Python

Operadores

Un operador € un simbolo, un caracter ou unha combinacion de varios caracteres que forman
parte das regras sintacticas de Python e permiten realizar unha determinada operacién entre un ou
mais datos (operandos) que produce un resultado. Temos varios tipos.

Permiten avaliar se un identificador refirese exactamente ao mesmo obxecto ou pertence
a un tipo.

Operador Avaliacion
is a is b Equivale a id(a) == id(b)
is not a is not b Equivale a id(a) !=id(b)

Por exempilo:

a =45

b = 45

ais b

True

type("0la") is str
True

True is 1

00 N O UV A~ W N R

False

Fonte: “Tipos de datos basicos y operadores”, pythonista.mx [En lifia]. Dispofible:
https://pythonista.io/cursos/py101/tipos-de-datos-basicos-y-operadores.. (CC BY SA)

Licenciado baixo a Licenza Creative Commons Recofiecemento Compartir igual 4.0

Rudimentos de Python

Operadores

Un operador € un simbolo, un caracter ou unha combinacion de varios caracteres que forman
parte das regras sintacticas de Python e permiten realizar unha determinada operacién entre un ou
mais datos (operandos) que produce un resultado. Temos varios tipos.

Mediante eval podemos avaliar se un obxecto tipo str (cadea de caracteres) coma se fose
unha expresion. Se o texto a avaliar non é valido daranos unha mensaxe de erro. Por
exemplo:

1 | eval("12 * 300")
2 3600

4 | eval("12 > 5")
5 True

Fonte: “Tipos de datos basicos y operadores”, pythonista.mx [En lifia]. Dispofible:
https://pythonista.io/cursos/py101/tipos-de-datos-basicos-y-operadores.. (CC BY SA)

Licenciado baixo a Licenza Creative Commons Reconecemento Compartir igual 4.0

Rudimentos de Python

Funciéns

Unha funcién é un subproceso ou subalgoritmo formado por
unha secuencia de instruciéns cunha tarefa especifica. As
veces, nun determinado programa é necesario efectuar

unha mesma tarefa en distintos puntos do programa. A
miudo, en diferentes programas tamén se repiten moitas
veces. Para evitar ter que volver escribir unha e outra vez
as mesmas instrucions, case todas as linguaxes de
programacion permiten agrupar porcions de programa e reutilizalos nun mesmo programa ou en
diferentes. Son as subrutinas. Se unha subrutina se vai utilizar nun Unico programa, adoitase

Geralt en Pixabay. learn (CCOQ)

definir no propio programa. Pero cando unha subrutina emprégase en varios programas, non &
necesario repetila en cada programa (perderianse algunhas das vantaxes comentadas
anteriormente), sendn que se pode incluir nun ficheiro aparte ao que os programas poden acceder
para recuperar as subrutinas. Estes ficheiros reciben o nome de bibliotecas (en espafiol adéditase
dicir moito libreria, traducindo incorrectamente o termo inglés library). En Python utilizase o termo
funcidn para referirse as subrutinas e o termo modulo para referirse as bibliotecas.

A ter en conta: definindo funcions

Aspectos relacionados coa sintaxe nas funciéns

Funcions en Python

Definindo funcidéns

A sintaxe mais simple para un bloque de cédigo dunha funcién é a seguinte:

def functionName () :

Exemplo:

def sauda():
print ("0la")

print ("Vou saudar")
sauda()

print ("Saudo de novo")
sauda()

Obteno como resultado:

Vou saudar
Ola

Saudo de novo
Ola

Parametros dunha funcién

Cando defino un parametro nunha funcién (cun nome entre parénteses), podo
usalo nela coma unha variable. O nome que eliximos realmente non importa,
asi que mellor empregar nomes significativos. Cando invocamos a funcion,
debemos darlle un valor entre parénteses, que sera o valor que usa Python
para executar a funcion. Por exemplo:

def suma(a,b):

return a + b
print ("A suma vale...")
print (suma(15, 5))

Argumentos

Os argumentos son os valores que empregan as funciéns. Podemos porier
varios valores se 0os separamos mediante comas. Exemplo:

def escribe_media():
media = (a + b) / 2
print(f"Aa media de {a} e {b} é: {medial}")

return
a =3
b =75

escribe_media()
print("Fin do programa")

Aa media de 3 e 5 é: 4.0
Fin do programa

Referencia: Funcidns integradas

Python dispdén dunha serie de funcions sempre dispofiibles. Son as built-in functions.
Inserimos o documento onde se explican as funcidns integradas que veifen na
documentacion oficial de Python. (En inglés)

Ocultar a retroaccion

https://docs.python.org/3/library/functions.html

The Python Standard Library. Built-in Functions (Tédolos dereitos reservados)

Licenciado baixo a Licenza Creative Commons Recofiecemento Compartir igual 4.0

Rudimentos de Python

Variables

Diciamos noutras unidades que para moitas linguaxes de
programacion as variables poden entenderse como caixas
nas que se almacenan os datos, pero en Python as
variables son etiquetas que permiten a referencia aos datos
(que se almacenan en caixas chamadas obxectos).

Python é unha linguaxe de programacion orientada a
obxectos e 0 seu modelo de datos tamén esta baseado en
obxectos.

Para cada dato que aparece nun programa, Python crea un
obxecto que o contén. Cada obxecto ten:

'

Clker-Free-Vector-lmages en Pixabay.

Storage (CCO)

« Un identificador unico (un nimero enteiro, diferente para cada obxecto). O identificador

permite a Python facer referencia ao obxecto inequivocamente.

« Un tipo de datos (enteiro, decimal, cadea de caracteres, etc.). O tipo de datos permite a

Python saber que operaciéns se poden facer cos datos.
« Un valor (os datos en si).

Deste xeito, as variables en Python non gardan os datos, sendn que son nomes simples para

poder referirse a eses obxectos. Se escribimos a instrucion ...

Noutras linguaxes estamos indicando que creamos a variable a e introducimos o valor 2 nesa

caixa a. En Python o significado é diferente:

« Crear o obxecto "2". Ese obxecto tera un identificador unico asignado no momento da
creacioén e mantido durante todo o programa. Neste caso, o obxecto creado sera de tipo

enteiro e mantera o valor 2.
« Asocia o nome a co numero enteiro obxecto 2 creado.

Definir variables

As variables de Python créanse cando estan definidas por primeira vez, € dicir, cando
se lle atribue un valor por primeira vez. Para asignar un valor a unha variable, Usase o

operador de igualdade (=). A esquerda da igualdade escribese o nome da variable e &
dereita o valor que desexa dar a variable.

Nomear variables

Ainda que non sexa obrigatorio, recoméndase que o nome da variable estea
relacionado coa informacion almacenada nel, de forma que sexa mais doado
comprender o programa. Se o programa € trivial ou mentres se esta a escribir un
programa, isto non parece ser moi importante, pero se consultamos un programa
escrito por outra persoa ou escrito por un mesmo pero hai algun tempo, sera moito
mais doado comprendelo se os nomes son correctos.

No IDLE invocamos a variable simplemente escribindo o seu nome

>>>a =2
>>> a
2

Tamén se adoita empregar certos nomes de variables nalguns casos, como veremos
mais tarde, pero tampouco é obrigatorio. Como normas xerais debemos respectar o
seguinte:

« O nome dunha variable debe comezar cunha letra ou un guién baixo (_) e pode
continuar con mais letras, nimeros ou guions baixos.

+ Os nomes de variables non poden incluir espazos en branco.

« Os nomes das variables poden conter calquera caracter alfabético (aqueles do
alfabeto inglés, pero tamén i, ¢ ou vogais acentuadas), ainda que se
recomenda usar s6 os caracteres do alfabeto inglés.

« Os nomes das variables poden ser maiusculas, pero hai que ter en conta que
Python distingue entre maiusculas e minusculas (en inglés, Python é "sensibel a
maiusculas e minusculas").

« Cando o nome dunha variable contén varias palabras, é recomendable
separalos con guions baixos para facilitar a lectura, ainda que tamén se usa a
notacion CamelCase , onde as palabras non estan separadas pero comezan
con maiusculas (excepto a primeira palabra).

» As palabras reservadas (keywords) da linguaxe (aquelas que IDLE escribe en
laranxa) estan prohibidas como nomes de variables.

» Os nomes das funciéns incorporadas poden usarse como nomes de variables,
pero é mellor non facelo porque entén a funcién xa non pode utilizarse como tal

Licenciado baixo a Licenza Creative Commons Recofnecemento Compartir igual 4.0

Rudimentos de Python

Secuencias: Tuplas, Listas e Rangos

Tuplas

En Python, unha tupla é un conxunto ordenado e inmutable de elementos do mesmo

tipo ou diferente. As tuplas estan representadas escribindo os elementos entre
parénteses e separados por comas.

>>> (1, "a" , 3.14)
(1, 'a', 3.14)

Listas

As listas son conxuntos de elementos ordenados (niUmeros, cadeas, listas, etc.). As
listas estan delimitadas por corchetes ([]) e os elementos estan separados por comas.

As listas poden conter elementos do mesmo tipo:

>>> primos = [2, 3, 5, 7, 11, 13]

>>> diasLaborables = ["Luns" , "Martes" , "Mércores" , "Xoves"

4

Ou poden conter elementos de diferentes tipos:

>>> data = ["Luns" , 27, "outubro" , 1997]

Ou poden conter listas:

>>> peliculas = [["Paths of Glory" , 1957], ["Hannah e as suas

Rangos

En Python un rango (range) es un tipo de datos. O tipo range é una lista inmutable
de numeros enteiros en sucesion aritmética.

O tipo de intervalo é unha lista sen cambios de enteiros en secuencia aritmética .

« Inmutable significa que, a diferenza das listas, os intervalos non se poden
modificar.

» Unha sucesion aritimética € unha sucesion na que a diferenza entre dous
termos consecutivos € sempre a mesma.

Un intervalo é creado chamando ao tipo de datos cun, dous ou tres argumentos
numéricos, coma se fose unha funcion.

En Python 2, o intervalo () foi considerado unha funcion, pero en Python 3 non se
considera unha funcion, senén un tipo de datos, ainda que se usa como se fose unha
funcion.

O tipo de rango () cun unico argumento escribese intervalo (n) e crea unha lista
inmutable de n enteiros consecutivos que comezaen 0 e remataenn- 1.

Para ver os valores do intervalo (), é necesario convertelo en lista mediante a funcién
list ().

>>> X = range(10)

>>> X

intervalo (0, 190)

>>> lista (x)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> intervalo (7)

intervalo (0, 7)

Lista >>> (intervalo (7))

[0, 1, 2, 3, 4, 5, 6]

En resumo, os tres argumentos del tipo range (m, n, p) son:

« m: o valor inicial
» n: o valor final (que non se acada nunca)
» p: 0 paso (a cantidade que se avanza cada vez)

If sempre avalia unha expresion loxica e no caso de que a expresion tefia resultado True | o cddigo que esta indentado (sangrado)
a continuacion executarase . No caso de que a declaracion resulte False , o intérprete ignorara o blogue de codigo sangrado e
continuarase coa seguinte instrucidn que exista despois dese bloque de cédigo. O codigo seria da seguinte forma:

<fluxo principals

if <expresidn ldxicax: C:::::)

<blogue inscrito a if:>

<fFluxo principals

fue

Vémolo no seguinte exemplo:

False

S - : - . "y Y
numero = int(input(“Escribe un ndmero maior que 18: "))

if numero <= 1@:

print(”;Dixenlle gue escriba un nimero maior que 18!")

print(f“Escribiu o ndmero {numero}™)

Fundacion Plone y amigos. i Simple

(GHUIGEL)
Escribe un nimeroc maior que 18: 9

iDixenlle que escriba un ndmero maior gue 18!

Escribiu o ndmero 9

if...else (Se...senodn....)

A estrutura de control if .. else permite que un programa execute un ou varios blogues de codigo
dependentes cando se cumpre unha determinada condicion (true). Se non se cumpre o
programa continda

<fluxo principals>

if <expresion loxicar:
<blogue inscrito a if:
else:
<blogue inscrito a else>

<fluxo principals>

A primeira lifia contén a condicién para avaliar. Esta lifia debe rematar sempre por dous puntos
(:). A continuacion ven o blogue de ordes que se executan cando a condicion se cumpre (€ dicir,
cando a condicién & verdadeira). Este bloque debe ir sangrado. Ao escribir dous puntos (1) ao
final dunha lifia, IDLE sangrara automaticamente as lifias seguintes.

Despois aparece a lifia coa orde else, que indica a Python que o blogue que ven a continuacian

T

Fundacign Plone y amigos. Jf..alse
W EMIgos. [T eize

(ENUWIEEL)

tense que executar cando a condicion non se cumpra (& dicir, cando sexa falsa). Esta lifia tamén debe rematar sempre por dous
puntos (). Alina coa orde else non debe incluir mais nada que o else e 05 dous puntos. En dltimo lugar esta o blogue de

instrucions sangrado que corresponde ao else.

Vemos un exemplo:

f o

contrasinal = input ("introduce o contrasinal:
if contrasinal == "swordfish":
I

print ("contrasinal aceptada™)

else:
print(“"Alerta intrusos”)

i oo

print("Que tefia un bo dia")

========== RESTART: C:/Users//proba.py ==========
intreduce o contrasinal: swordfish

contrasinal aceptada

Que tefia un bo dia

33>

Introdiicese o valor da variable contrasinal por teclado mediante unha funcién input. Se o contrasinal € a palabra
swordfish imprimese en pantalla a mensaxe “Contrasinal aceptada” Se non o &, aparece en pantalla a mensaxe “Alerta intrusos”.
Unha vez aceptada ou rexeitada o contrasinal, chégase 4 instrucion gue presenta en pantalla a mensaxe “Tefia un bo dia”.

Unha sentencia condicional pode contar a sia vez outra ou varias sentencias condicionais dependentes nunha estrutura que, coma
noutras linguaxes, denominase Esfrutura anifiada.

if...elif...else

E posible avaliar mais dunha expresion léxica mediante o uso de elif A estrutura de

control if . elif .. else . permite encadear varias condiciones. efif € una contraccion de else if.
Mo caso de que exista mais dunha expresion léxica que dea como resultado True, Python
executara soamente o codigo delimitado pola primeira na que ocorra. No caso de que ningunha
das condicions dea resultado True podese utilizar else ao final da estrutura.

A orde en Pyhton escribese asi:

<fluxo principal>

if <expresion loxicar:
<blogue inscrito a if:

glif <expresidn ldxica 1»:
<blogque inscrito a elif»

elif <expresidn loxica 2»:
<blogue inscrito a elif>

elif <expresidn ldxica n>:
<blogue inscrito a elif»
else:
<blogue inscrito a else>
<fluxo principals

Fundacion Plone y amigos. K. eiif. alzse
rundscson Flone y amigos. i el eize

[GNUIEEL)

Vemos un exemplo:

"

idade= int(input("Cal é a sda idade? "))
if idade < 18:

print(“"Ten un desconto do 58%")
elif idade < 17:

print(“Ten un desconto do 25%")
else:

print("MNon ten vostede desconto algin")

========== RESTART: C:/Users/proba.py ==========
Cal & a sua idade? &

Ten un desconto do 5@%

>33

========== RESTART: C:/Users/proba.py ==========
Cal & a sda idade? 15

Ten un desconto do 25%

Y

========== RESTART: C:/Users/proba.py ==========
Cal & a sda idade? 33

Mon ten wostede desconto algln

Este programa indica segundo a idade a tarifa que se lle aplica. Asi para menores de 10 anos existe un desconto do 50%, de 10 a
16 anos do 25% e para o resto das idades non existe desconto.

Rudimentos de Python

Estruturas de control

Coma noutras linguaxes, é fundamental cofiecer as estruturas de control de fluxo de datos de
Python para case calquera programa que desexemos crear. Recordamos que en estruturas de
control incluiamos as estruturas secuenciais, as condicionais e as repetitivas.

Estruturas Secuenciais

Manuel Torres Bua. Secuencia (CC BY-SA)

Unha estrutura secuencial, como sabemos, é aquela na que o fluxo de informaciéon do
programa realizase en etapas consecutivas. Non nos pararemos neste tipo xa que
podemos afirmar que inclie calquera posibilidade de programacién con Python
sempre que non se altere sucesién ordenada do fluxo de informacion

Estruturas condicionais

Estruturas repetitivas

As estruturas repetitivas son aquelas nas que hai presenza de bucles ou jteracions. O
programa vai repetir un ou varios bloques de cédigo, ben un nimero determinado de
veces, ben en funcién do cumprimento ou non dunha condicién.

Con for pédese crear un ciclo que repite un ou varios bloques de instrucions
unha cantidade preestablecida de veces. O bloque de instrucions que se
repite adoitase denominar o corpo do ciclo e cada repeticion adoita
denominarse iteracion. A construcidon usa unha variable que en cada ciclo
toma o valor dun novo elemento da lista da clausula in. O ciclo finalizara
cando se acade o ultimo elemento da lista ou cando o seu final estea forzado
pola palabra break

A sintaxe dun for...in é o seguinte:

for variable in elemento iterable (1

corpo do bucle

Vemos un sinxelo exemplo:

print("Inicio")

for i in [0, 1, 2]:
print("Chao ", end="")

print()

print("Fin")

Inicio

Chao Chao Chao
Fin

>>>

Podemos definir a variable ou empregar outra xa definida no programa. O
numero de repeticiéns o delimita in, e o corpo do bucle poden ser elementos
illados, listas, cadeas, rangos,...

As veces podemos empregar variables que contefien o niimero de veces que
sucede algo (contadores) ou os valores que se acumulan (acumuladores).

Exemplo de contador:

print("Inicio")
conta = @
for i in range(1, 6):
ifi%2-==20:
conta = conta + 1
print(f"Dende 1 ata 5 hai {conta} multiplos de 2")

Inicio
Dende 1 ata 5 hai 2 multiplos de 2

Exemplo de acumulador:

print("Inicio")
suma = O
for i in [1, 2, 3, 4]:
suma = suma + i
print(f"A suma dos numeros de 1 a 4 é {suma}")

inicio
A suma dos numeros de 1 a 4 é 10

Licenciado baixo a Licenza Creative Commons Recofiecemento Compartir igual 4.0

Rudimentos de Python

Estruturas de control

Coma noutras linguaxes, é fundamental cofiecer as estruturas de control de fluxo de datos de
Python para case calquera programa que desexemos crear. Recordamos que en estruturas de
control incluiamos as estruturas secuenciais, as condicionais e as repetitivas.

Estruturas Secuenciais

DD DD D

Manuel Torres Bua. Secuencia (CC BY-SA)

Unha estrutura secuencial, como sabemos, é aquela na que o fluxo de informacién do
programa realizase en etapas consecutivas. Non nos pararemos neste tipo xa que
podemos afirmar que inclue calquera posibilidade de programacién con Python
sempre que non se altere sucesién ordenada do fluxo de informacion

Estruturas condicionais

Estruturas repetitivas

As estruturas repetitivas son aquelas nas que hai presenza de bucles ou jteracions. O
programa vai repetir un ou varios bloques de cédigo, ben un nimero determinado de
veces, ben en funcién do cumprimento ou non dunha condicién.

Fundacién Plone y amigos. While (GNU/GPL)

Un Bucle while
permitenos repetir a
execuciéon dun grupo
de instruciéns mentres
se cumpre unha

condicion (é dicir:
sempre que a
condicién tefia o valor
True). A sintaxe do
ciclo while é a

seguinte: @ THic
while contk<€ion:

False
corpo flo bucle

Cando chega a un
bucle while, Python l

avalia a condicion e,

se é verdadeira, O
executa o corpo do

ciclo. Unha vez que se
executa o corpo do
ciclo, o proceso repitese valorando a condicién novamente e, se é verdadeira,
o corpo do ciclo executase; unha e outra vez. S6 cando a condicion é falsa, o
corpo do ciclo non se executara e continuara a execucion do resto do
programa.

Exemplo:

numero = int(input("Escribe un numero maior que dez: "))
while numero <= 10:
print("Escribiu un ndmero que non é maior que 10! Inté

numero = int(input("Escribe un numero maior que dez:
print("Grazas pola sua colaboracién™)

======== RESTART: C:/Users/proba.py ==========

Escribe un numero maior que dez: 8

Escribiu un numero que non é maior que 10! Inténteo de nov
Escribe un numero maior que dez: 9

Escribiu un numero que non é maior que 10! Inténteo de nov
Escribe un numero maior que dez: 10

Escribiu un numero que non é maior que 10! Inténteo de nov
Escribe un numero maior que dez: 58

Grazas pola sua colaboraciodn

>>>

Rudimentos de Python

Alguns exemplos

Presentamos a continuacion alguns exemplos de programas desenvolvidos en Python, amosando
0 seu codigo fonte.

Exemplo 1

Programa para calcular o indice de masa corporal (IMC), a partir da introducion dos datos
peso e altura.

Calculo do IMC |

print("CALCULO DO INDICE DE MASA CORPORAL (IMC)")
peso = float(input(“Canto pesa? "))
altura = float(input("Canto mide en metros? "))

imc = peso / altura**2

print(f"0 seu IMC é {round(imc, 1)}")

print("Un IMC moi alto indica obesidade. Os valores \"normais\" de IM
print("entre 20 y 25, pero estes limites dependen da idade, do sexo,
print("constitucién fisica, etc.")

========= RESTART: C:/Usersproba.py ==========

CALCULO DO INDICE DE MASA CORPORAL (IMC)

Canto pesa? 75

Canto mide en metros? 1.76

O seu IMC é 24.2

Un IMC moi alto indica obesidade. Os valores "normais" de IMC estéan
entre 20 y 25, pero estes limites dependen da idade, do sexo, da

constitucidén fisica, etc.

Exemplo 2 (if...elif...else)

Programa que solicite os coeficientes dunha ecuacién de segundo grao (ax*+bx+c=0)e

calcule e escriba a solucion.

Unha ecuacion de segundo grao ou non ten solucién, ou ten unha solucién unica, ou ten

duas solucidns ou ben todos os numeros son unha solucion. A formula das solucidéns cando

hai duas solucions é

x = (-b £V (b 2 -4ac)) / (2a)

Alguns exemplos de posibles respostas

a b c
1 -2 2
2 -7 3
1 2 1
0 0 5
0 0 0
0 3 2
Programa

Esta é unha posible solucion

print("ECUACION A X2 + B

Solucién

Sen solucioén real

Duas soluciéns: 0,5 e 3,0

Unha solucién: -1.0

Sen solucién

Todos 0s humeros son solucion

Unha solucion: -0.666 ...

X+ C=0")
o valor do coeficiente a: "))
o valor do coeficiente b: "))

o valor do coeficiente b: "))

print("Todos os numeros son solucién™)

a = float(input("Escriba
b = float(input("Escriba
¢ = float(input("Escriba
d = b*b - 4*a*c

ifa:: == C ==

elif a == b == O:

print("Sen solucion™)

elif a ==
print(f"Unha solucidén: {- c / b}")

elif d < 0:

print("Sen solucidén real")
elif d == @:

print(f"Unha solucidén: {- b / (2*a)}")
else:

print(f"Duas solucidéns: {(-b - d**@.5) / (2*a)} y "
f"{(-b + d**0.5) / (2*a)}")

========== RESTART: C:/Users/proba.py ==========
ECUACION A X2 + B X + C =0

Escriba o valor do coeficiente a: -8

Escriba o valor do coeficiente b: 6

Escriba o valor o coeficiente b: 7

Daas solucidns: 1.3827822185373186 y -0.6327822185373186

Exemplo 3 (range())

Programa que solicita tres numeros enteiros, calcula e escribe a lista de multiplos do
terceiro numero entre os dous primeiros (incluidos os mesmos se son multiplos do numero
indicado)

Programa

pPint("MULTIPLOS ENTRE VALORES")
inicial = int(input("Escriba o numero enteiro inicial: "))
final = int(input("Escriba o numero enteiro final: "))

if final < inicial:
print("jO nimero final debe ser maior que o iniciall!™)
else:
paso = int(input("De que numero quere os multiplos?: "))
if paso <= @:
print("j0Os multiplos deben ser dun numero enteiro maior que c
else:
if inicial % paso != @:

inicial2 = inicial // paso * paso + paso

else:
inicial2 = inicial

print(f"Entre {inicial} e {final} hai "
f"{len(range(inicial2, final + 1, paso))} multiplos de
print(list(range(inicial2, final + 1, paso)))

========== RESTART: C:/Users/proba.py ==========
MULTIPLOS ENTRE VALORES

Escriba o numero enteiro inicial: 15

Escriba o numero enteiro final: 12

iO numero final debe ser maior que o inicial!
>>>

========== RESTART: C:/Users/proba.py ==========
MULTIPLOS ENTRE VALORES

Escriba o numero enteiro inicial: 15

Escriba o numero enteiro final: 42

De gue numero quere os multiplos?: -3

iOs multiplos deben ser dun numero enteiro maior que cero!
>>>

========== RESTART: C:/Users/proba.py ==========
MULTIPLOS ENTRE VALORES

Escriba o nUmero enteiro inicial: 15

Escriba o numero enteiro final: 42

De gue numero quere o0s multiplos?: 3

Entre 15 e 42 hai 10 multiplos de 3

(15, 18, 21, 24, 27, 30, 33, 36, 39, 42]

>>>

Exemplo 4 (for...in)

Programa que pide un numero enteiro maior que 0 e que calcula e escribe os seus divisores

Programa

print("DIVISORES")
numero = int(input("Escriba un numero enteiro maior que cero: "))

if numero <= 0O:
print("Pedinlle un nldmero entero maior que cero!")
else:
print(f"0s divisores do {numero} son ", end="")
for i in range(1, numero + 1):
if numero % i ==
print(i, end=" ")

========== RESTART: C:/Users/proba.py ==========

DIVISORES

Escriba un nUmero enteiro maior que cero: -3
Pedinlle un numero entero maior que cero!

>>>

========== RESTART: C:/Users/proba.py ==========
DIVISORES

Escriba un nUmero enteiro maior que cero: 123

Os divisores do 123 son 1 3 41 123

>>>

(for...in con contadores)

Programa que pide un niumero enteiro maior que 1 e que calcula e escribe se é un niumero
primo ou non

Programa

print ("NUMERO PRIMO")
numero = int(input("Escriba un numero enteiro maior que 1: "))

if numero <= 1:
print("Pedinlle un numero enteiro maior que 1!")
else:
contador = 0
for i in range(1, numero + 1):
if numero % i ==
contador = contador + 1
if contador ==
print(f"{numero} é primo")
else:
print(f"{numero} non é primo")

========== RESTART: C:/Users/proba.py ==========
NUMERO PRIMO

Escriba un numero enteiro maior que 1: -3
Pedinlle un numero enteiro maior que 1!

>>>

========== RESTART: C:/Users/proba.py ==========
NUMERO PRIMO

Escriba un numero enteiro maior que 1: 8

8 non é primo

>>>

========== RESTART: C:/Users/proba.py ==========
NUMERO PRIMO

Escriba un numero enteiro maior que 1: 5

5 é primo

>>>

(for...in con acumuladores)

Programa que pregunta cantos numeros se queren introducir, e que calcula e escribe o
maximo, o minimo e a media aritmética.

Programa

print("MAIOR, MENOR E MEDIA ARITMETICA")
numero = int(input("Cantos valores vai introducir? "))

if numero <= O:
print("Imposible!")
else:
valor = float(input("Escriba o numero 1: "))
minimo = maximo = suma = valor
for i in range(2, numero + 1):
valor = float(input(f"Escriba o numero {i}: "))
suma = suma + valor
if valor < minimo:
minimo = valor
if valor > maximo:
maximo = valor
print(f"0 numero mais pequeno dos introducidos é {minimo}")
print(f"0 numero mais grande dos introducidos é {maximo}")
print(f"A media dos numeros introducidos é {suma / numero}")

========== RESTART: C:/Users/proba.py ==========
MAIOR, MENOR E MEDIA ARITMETICA
Cantos valores vail introducir? 6

Escriba o numero 1: 25

Escriba o nUmero 2: 47
Escriba o numero 3: 268
Escriba o numero 4: 2565
Escriba o ntmero 5: 55
Escriba o nUmero 6: 45

O nUmero méis pequeno dos introducidos é 25.0

O nUmero méis grande dos introducidos é 2565.0

A media dos numeros introducidos é 500.8333333333333
>>>

Exemplo 5 (while)

Programa que solicita un valor limite positivo e que vaia solicitando niumeros ata que a sua
suma supere o limite inicial.

Programa

limite = float(input("Escriba o valor limite: "))
while limite <= 0:
limite = float(input("O limite debe ser maior que @. Inténteo de

numero = float(input("Escriba un ndmero: "))
suma = @
suma += numero

while suma < limite:
numero = float(input("Escriba outro numero: "))
suma += numero

print()
print(f"Xa superou o limite. A suma dos numeros positivos introducido
print("Programa rematado")

========== RESTART: C:/Users/proba.py ==========
Escriba o valor limite: -254

O limite debe ser maior que 0. Inténteo de novo: 254
Escriba un numero: 2

Escriba outro ntmero: 65

Escriba outro ntmero: 21

Escriba outro ntmero: 84

Escriba outro ntmero: 35

Escriba outro ntmero: 2

Escriba outro numero: 69

Xa superou o limite. A suma dos numeros positivos introducidos é 278.0.
Programa rematado

>>>

Estes exemplos son unha traducién e adaptacion dos contidos en [nfroduccion a la programacion con Python de Bartolomé Sintes

Marco (Mclibre) con licenza CC BY SA.

Licenciado baixo a Licenza Creative Commons Recofecemento Compartir igual 4.0

