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]. 1,5 ptos 2 1 ptos 3 1 ptos NOta

(Se non hai indicaciéns, todos os apartados valen o mesmo)
1. Dada a funcidn:
x?+ a

f(x) =} 2x—4
10x24+x+b sex>0

se x <0

a) Atopa a condicién que tefien que cumprir os parametros a e b para que a

funcion y = f(x) sexa continua.
b) Calcule f'(x).

c) Atopa a condicién que tefien que cumprir os parametros a e b para que a

funcién y = f(x) sexa derivable.

(Baleares Ordinaria 2022)

2. Calcula os seguintes limites (non se pode usar L'Hopital nos dous apartados):
sin2x + (1 —x)2—1

a) ||,m (Extremadura Xufio 2017)
x—0 In(cos x)
VX2 —x+1—-2x—-1
b) ||m (Castilla y Leén Extraordinaria 2020)
x—1 1—x

X2

3. a) Considera as funciénsf e g: R — R definidas por f(x) = 3—x? e g(x) = 7
Calcula a ecuacion da recta tanxente 4 grafica de f no punto de abscisa x =1 e
comproba que tamén é tanxente 4 grafica de g. Determina o punto de tanxencia

COa gra’fica de g. (Andalucia Xufio 2018)

b) Enuncia o teorema de Bolzano. (matipies exames Galicia)
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1. Dada a funcion:

X2+ a

e <
f(x) = 2% —4 se w0

10x°+x+b sex>0

a) Atopa a condicién que tefien que cumprir os parametros a e b para que a
funcion y = f(x) sexa continua.

b) Calcule '(x).
c) Atopa a condicién que teflen que cumprir os parametros a e b para que a

funcion y = f(x) sexa derivable.

(Baleares Ordinaria 2022)
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2. Calcula os seguintes limites (non se pode usar L'H6pital nos dous apartados):
sin2x + (1 —x)2—1

a) ||,m (Extremadura Xufio 2017)
x—0 In(cos x)
VX2 —x+1—+2x—-1
b) ||m (Castilla y Leén Extraordinaria 2020)
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3. a) Considera as funciénsf e g: R — R definidas por f(x) = 3—x° e g(x) = 7
Calcula a ecuacién da recta tanxente a grafica de f no punto de abscisa x =1 e
comproba que tamén é tanxente a grafica de g. Determina o punto de tanxencia

COa gréfica de g. (Andalucia Xufio 2018)

b) Enuncia o teorema de Bolzano. (witiples exames Gaiicia)
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DEPARTAMENTO Matematicas I E Lufmi
DE MATEMATICAS

o™ 30 de outubro de 2025 s

1. ptos 21 ptos (0,75 + 0,25) 315 ptos (0,5 + 0,25 + 0,25 + 0,5) Nota

(Se non hai indicaciéns, todos os apartados valen o mesmo)

1. Sexa g(x) = x —sinx con x € R

a) Estudia os intervalos de crecemento e decrecemento de g(x)

. (o -~ : T
b) Obtén os maximos e minimos absolutos de g(x) no intervalo [ > w}
(Aragén 2025)

2. Na empresa “"MARKOAK" fabrican marcos para cadros. Nesta ocasion lles soli-
citaron marcos para 274 cadros rectangulares. Todos os cadros tefien as mesmas
dimensidns e unha superficie de 0,3 m?. Para cada marco van emplear dous tipos
de material: as partes horizontais seran dun material cuio coste é de 12 €/m y
para as verticais utilizaran un material cuio coste é de 10 €/m. A empresa que
realiza o pedido quere pagar o minimo posible. Calcula:

1. Cales deben ser as medidas dos cadros para pagar o minimo posible?

2. A canto ascenderd a factura?
(Pais Vasco Ordinaria 2025)

3. a) Enuncia o teorema de Rolle. (aicia matipies anos)
1
b) Considera a funcién f(x) = e
|. Comproba que f(2) = f(—2).
Il. Comproba que non existe ¢ € [—2, 2] tal que f'(¢) = 0.

[11. Hai unha contradicién coa conclusién do teorema de Rolle?

(Balears Ordinaria 2021)
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1. Sexa g(x) = x —sinx con x € R

a) Estudia os intervalos de crecemento e decrecemento de g(x)

b) Obtén os maximos e minimos absolutos de g(x) no intervalo [

NS

]

(Aragon 2025)
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2. Na empresa “MARKOAK" fabrican marcos para cadros. Nesta ocasion lles soli-
citaron marcos para 274 cadros rectangulares. Todos os cadros tenen as mesmas
dimensidns e unha superficie de 0,3 m?. Para cada marco van emplear dous tipos
de material: as partes horizontais seran dun material cuio coste é de 12 €/m 'y
para as verticais utilizaran un material cuio coste é de 10 €/m. A empresa que
realiza o pedido quere pagar o minimo posible. Calcula:

1. Cales deben ser as medidas dos cadros para pagar o minimo posible?

2. A canto ascenderd a factura?

(Pais Vasco Ordinaria 2025)
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3. a) Enuncia o teorema de Rolle. (Gaicia mattiptes anos)

1

b) Considera a funcién f(x) = e

|. Comproba que f(2) = f(—2).
Il. Comproba que non existe ¢ € [—2, 2] tal que f'(c) = 0.

[11. Hai unha contradicidn coa conclusién do teorema de Rolle?

(Balears Ordinaria 2021)
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(Se non hai indicaciéns, todos os apartados valen o mesmo)

1. Calcula as seguintes integrais:

a) /(x2 —3)(4x + 1)dx

b) /%dx

2. Calcula as seguintes integrais:

a) /sin(2x+3) cos(x — 1)dx

)/ X+ 3
X2+6X+5

3. Calcula as seguintes integrais:
2) / —5cosx
vV1+ smx
—b)
b) / (f_dx
VX
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1. Calcula as seguintes integrais:

a) /(x2 —3)(4x + 1)dx

b) /%dx
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