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Calcula las derivadas (usando la definición) de las siguientes funciones en los puntos que se 

indican:  

a) 4x3)x(f −=     en 1x =    c) x5)x(j −=    en 1x −=  

b) 1xx)x(g 2 +−=    en 0x =    d) 2x21)x(i −=    en 2x =  

Solución. 

 

 

Calcula las derivadas (usando la definición) de las siguientes funciones en los puntos que se 
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Calcula las derivadas (usando la definición) de las siguientes funciones en un punto cualquiera: 

a) 5x3)x(f −=         c) 4x)x(j 2 −=     

b) 
2

x34
)x(g

−
=        d) xx2)x(i 2 +−=    

Calcula, usando los resultados obtenidos, f’(2)  g’(-1), j’(0) i’(3). 

Solución. 
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Calcula las derivadas de las siguientes funciones usando reglas de derivación: 
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Solución. 
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Calcula las derivadas (usando la definición) de las siguientes funciones en los puntos que se 

indican:  

a) 4x3)x(f −=     en 1x =    c) x5)x(j −=    en 1x −=  

b) 1xx)x(g 2 +−=    en 0x =    d) 2x21)x(i −=    en 2x =  

 

Solución. 

a) 4x3)x(f −=     en 1x =   
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Calcula las derivadas (usando la definición) de las siguientes funciones en los puntos que se 

indican:  

a) 
x

3
)x(f =     en 1x −=    c) 

1x

x
)x(j

+
=    en 3x =  

b) 
1x

2
)x(g

−
=    en 0x =    d) 

4

3x2
)x(i

−
=    en 2x =  

 

Solución. 
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Calcula las derivadas (usando la definición) de las siguientes funciones en un punto cualquiera: 

a) 5x3)x(f −=         c) 4x)x(j 2 −=     

b) 
2

x34
)x(g

−
=        d) xx2)x(i 2 +−=    

Calcula, usando los resultados obtenidos, f’(2)  g’(-1), j’(0) i’(3). 

 

Solución. 
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NOTA: 

El hecho de que f’(x)=3 significa que la derivada es 3 para cualquier valor de x. 

NOTA: 

El hecho de que g’(x)=-3/2 significa que la derivada es -3/2 para cualquier valor de x. 
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Calcula las derivadas de las siguientes funciones usando reglas de derivación: 
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Solución. 
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