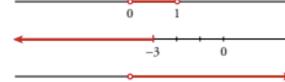
1; 2; 2,3; 3; 3,9; 4; 4,1

- a) Indica cuáles de ellos pertenecen al intervalo [2, 4).
- b) ¿Y cuáles pertenecen al intervalo [2, 4]?
- c) ¿Y cuáles al (2, +∞)?
- a) Al intervalo [2, 4) pertenecen el 2; 2,3; 3; 3,9.
- b) En el intervalo [2, 4] están el 2; 2,3; 3; 3,9; 4.
- c) En el intervalo (2, +∞) se encuentran los números 2,3; 3; 3,9; 4; 4,1.

9 IIII Escribe en forma de intervalo y representa los números que cumplen las condiciones indicadas en cada caso:

a)
$$0 < x < 1$$

b)
$$x \le -3$$


c)
$$x > 0$$

d)
$$-5 \le x \le 5$$

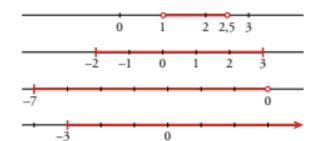
e)
$$x > -5$$

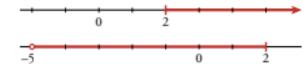
f)
$$1 \le x < 3$$

10 Escribe en forma de desigualdad y representa los siguientes intervalos:

a) (1; 2,5)

b) [-2, 3]


c) [-7, 0)


d) [-3, +∞)

e) (2, +∞)

f) (-5, 2]

- a) $\{x / 1 < x < 2,5\}$
- b) $\{x / -2 \le x \le 3\}$
- c) $\{x / -7 \le x < 0\}$
- d) $\{x / -3 \le x\}$
- e) $\{x / x > 2\}$
- f) $\{x/-5 < x \le 2\}$

- 11 Expresa como intervalo o semirrecta y como una desigualdad cada uno de los conjuntos de números representados:
 - a) $\frac{}{-2}$ $\frac{}{5}$
- b) $\frac{}{3}$
- c) 2 7
- **d**) ← _____

$$[-2, 5)$$

INTERVALO

 $\{x / -2 \le x < 5\}$

$$\{x \mid x \ge 3\}$$

$$\{x / 2 \le x \le 7\}$$

$$(-\infty, -1)$$

$$\{x / x < -1\}$$

Raíces y radicales

a)
$$\sqrt[4]{16}$$

b)
$$\sqrt{\frac{16}{25}}$$

c)
$$\sqrt[3]{\frac{1}{8}}$$

e)
$$\sqrt[3]{216}$$

f)
$$\sqrt[7]{-128}$$

m)
$$\sqrt[4]{\frac{625}{16}}$$

b)
$$\frac{4}{5}$$

c)
$$\frac{1}{2}$$

$$f) -2$$

$$g) -3$$

m)
$$\frac{5}{2}$$

17. Saca del radical los factores que sea posible.

a)
$$\sqrt{2^2 \cdot 5^3}$$

b)
$$\sqrt[3]{2^6 \cdot 7^3}$$

c)
$$\sqrt[4]{2^2 \cdot 3^6}$$

d)
$$\sqrt[3]{27 \cdot a \cdot b^3}$$

e)
$$\sqrt[4]{16a^5 \cdot b}$$

f)
$$\sqrt[5]{32 \cdot a^2 \cdot b^{10}}$$

d)
$$3b\sqrt[3]{a}$$

f)
$$2b^2 \sqrt[5]{a^2}$$

18. Extrae de cada radical los factores que sea posible:

a)
$$\sqrt[4]{32}$$

c)
$$\sqrt[3]{200}$$

f)
$$\sqrt[3]{250}$$

h)
$$\sqrt[3]{243}$$

i)
$$\sqrt{4a^3}$$

a)
$$\sqrt[4]{32} = \sqrt[4]{2^5} = 2\sqrt[4]{2}$$
 b) $\sqrt[3]{81} = \sqrt[3]{3^4} = 3\sqrt[3]{3}$

b)
$$\sqrt[3]{81} = \sqrt[3]{3^4} = 3\sqrt[3]{3}$$

c)
$$\sqrt[3]{200} = \sqrt[3]{2^3 \cdot 5^2} = 2\sqrt[3]{5^2}$$

d)
$$\sqrt{50} = \sqrt{2 \cdot 5^2} = 5\sqrt{2}$$

d)
$$\sqrt{50} = \sqrt{2 \cdot 5^2} = 5\sqrt{2}$$
 e) $\sqrt[4]{144} = \sqrt[4]{2^4 \cdot 3^2} = 2\sqrt[4]{3^2}$ f) $\sqrt[3]{250} = \sqrt[3]{2 \cdot 5^3} = 5\sqrt[3]{2}$

f)
$$\sqrt[3]{250} = \sqrt[3]{2 \cdot 5^3} = 5\sqrt[3]{2}$$

g)
$$\sqrt[5]{64} = \sqrt[5]{2^6} = 2\sqrt[5]{2}$$

g)
$$\sqrt[5]{64} = \sqrt[5]{2^6} = 2\sqrt[5]{2}$$
 h) $\sqrt[3]{243} = \sqrt[3]{3^5} = 3\sqrt[3]{3^2}$

i)
$$\sqrt{4a^3} = 2a\sqrt{a}$$